Théorie des probabilités
Livret d’exercices

1 Rappels de théorie de la mesure et d’intégration

Exercice 1

Soit (F,£) un espace mesurable, v une mesure sur (F,€) et f : E — IR une fonction
mesurable.
1. Montrer que si f est positive et satisfait [, f(z)dv(z) = 0, alors elle est nulle
v-presque partout.

2. Montrer que si f est strictement positive et f A x)dv(x) = 0 pour un certain
A€ &, alors v(A) = 0.

3. Montrer que pour tout A € &, si v(A) =0, alors [, f(z)dv(z) = 0.

Exercice 2

Soit (E,&) un espace mesurable, et soit v une mesure sur (E,E). Montrer que si f
et g sont deuX fonctions mesurables sur E, & valeurs réelles, satisfont [, f(x)dv(z) =
1} 19 x) quel que soit A € &, alors f = g v-presque partout.

[ndzce :on pourra considérer les ensembles mesurables {x € E : f(x) < g(x)} et
{r e E: f(z) > g(x)}, et utiliser des résultats de ’exercice précédent.

Exercice 3 Mesures de comptage

Soit (E, &) un espace mesurable tel que pour tout = € E, {z} € £. Soit ' C E un
sous-ensemble au plus dénombrable.
1. Montrer que F' € £.
2. Soitvp:Be&— #(BNF).
a) Vérifier que vp est une mesure sur (F,€). On l'appelle mesure de comptage
de F.
b) Vérifier que vp =
x.
c¢) Soit f : E — IR une fonction mesurable et positive. Montrer que

[ 1@ aveta) = 3 5ta)

zeF

wep 0z OU, pour tout x € E, §, est la mesure de Dirac en



d) Montrer que pour toute fonction mesurable f : E — R, f € L'(vr) si et
seulement si ) . |f(x)| < oo et, le cas échéant,

/E F(@) dvp(x) = 3 1),

zeF

Exercice 4

Soit (E, &) un espace mesurable et p et v deux mesures sur (E, £). Soient « et § deux
nombres réels positifs quelconques.

1. Vérifier que au + Sr est une mesure sur (E,E).

2. Soit f : E — IR une fonction mesurable telle que f € L'(u) N L'(v). Montrer
qualors f € L'(au + Bv) et que

/E £(@) d(op + Bv)(z) = a /E F() du(z) + /E F(z) du(z).

Exercice 5

Soient f et g les fonctions définies sur IR par f(r) = x et g(x) = 22, pour tout = € R.
Calculer [, f(x)du(z) et [, g(x)du(x), lorsque :

1. p est la mesure de Lebesgue de R et A =[0,¢], out >0 ;
o est la mesure de comptage de IN et A ={0,1,...,n}, oun > 0 est un entier ;
 est la mesure de comptage de {0,1} et A = {0,1} ;
p==0+(1/2)02+...4(1/n)d, et A= IR, ot n est un entier strictement positif ;
p=A+vet A=[—t 1], ou A est la mesure de Lebesuge sur IR, v est la mesure de
comptage de Z et t est un réel strictement positif ;

AN e A

6. p est la mesure absolument continue par rapport a la mesure de Lebesgue, de
densité donnée par lelze[,m], reR, et A=1R.

Exercice 6

Soit v la mesure de comptage de IN.

1. Les fonctions (z,y) € R? — e et (z,y) € IR? — e ™% sont-elles intégrables sur

IN* x [0, oo par rapport a la mesure produit v ® A, ot A est la mesure de Lebesgue
de R 7

2. Soit p la mesure sur IR absolument continue par rapport a la mesure de Lebesgue,

admettant pour densité la fonction x € R —

1+ 22
a) La fonction (z,y) € R? — e~ est-elles intégrable sur IN* x IR par rapport
a la mesure produit v ® p 7



b) La méme fonction est-elle intégrable sur IN* x [1, oo[ par rapport a la mesure
produit v ® u 7

3. Apres avoir justifié son existence, calculer

/ e~ dv(z) dy.
IN*x[0,00[

4. Déterminer la limite, lorsque n — oo, de

1
/ e~ dv(z) dy.
logn Ji2, . nix[0,0]

Exercice 7

Pour tout x € IR, on note p, la mesure sur IR admettant une densité f, par rapport
a la mesure de Lebesgue, donnée par

1 _ (y—=)2

2, VYyel.
\/271'6 Y

1. Démontrer que pour tout x € IR, u, est une mesure de probabilité.

lL<Aﬂ@+de@0dM@
lorsque v est :

a) la mesure Dirac en 0;

b) 50 + (51;

) la mesure uniforme sur [0, 1];

) la somme de la loi exponentielle de parametre 1 et de la mesure de comptage
de {—1,1}.

e) la somme de la loi exponentielle de parametre 1 et de la loi uniforme sur

{~1,1}.

Exercice 8

fo(y) =

2. Calculer 'intégrale

c
d

1. En utilisant le changement de variables x = rcosf,y = rsinf, dont on précisera
le domaine, et en justifiant rigoureusement et précisément toutes les étapes du
changement de variable, calculer I'intégrale double

z2 2
/ e dx dy.
RQ



:c2
2. En déduire la valeur de / e 2 dx.
R

Exercice 9 Tribus engendrées par des parties

Soit €2 un ensemble non vide quelconque. On rappelle que pour toute famille non vide
G de parties de 2, on note o(G) la tribu engendrée par G, i.e., la plus petite (au sens de
'inclusion) tribu de {2 contenant G.

1. Vérifier que pour toute famille non vide G de parties de €2, o(G) existe bien, et
qu’elle est donnée par l'intersection de toutes les tribus de 2 contenant G.

2. Soit G une famille non vide de parties de 2. Montrer que G est donnée par
I’ensemble de toutes les unions au plus dénombrables d’intersections au plus dénombrables,
ainsi que des intersections au plus dénombrables d’unions au plus dénombrables,
d’éléments de G et/ou de leurs complémentaires.

3. Montrer que pour tout A C Q, o({A}) = {0, A, AL, Q}.

Exercice 10 Tribus engendrées par des fonctions

Soit € un ensemble non vide quelconque et (F,E) un espace mesurable.

1. Pour toute fonction f : Q — E, on définit la tribu engendrée par f o(f) comme
étant la plus petite (au sens de 'inclusion) tribu de €2 telle que f soit mesurable.
Montrer que o(f) est la tribu image-réciproque de € par f, i.e., o(f) = {f~(B):
Be &}

2. Soit A C Q. Montrer que o(14) = o({A}).

3. Plus généralement, soit I un ensemble non vide, ((£;, &;)),; et, pour chaque i € I,
fi : Q@ — E; une fonction quelconque. La tribu engendrée par la famille (f;);cr est
définie comme la plus petite tribu de € telle que chaque f;,7 € I, soit mesurable.
On la note o ((fi)ier). Vérifier que

o ((fi)ier) =0 (U U(fi)> )

iel

Exercice 11

1. Soit © un ensemble quelconque. Montrer que la tribu engendrée par les singletons
de € est 'ensemble des parties A de € telles que A ou sont complémentaire est au
plus dénombrable.

2. En déduire que la tribu discrete de IR n’est pas engendrée par les singletons de IR.

3. En déduire que, plus généralement, si {2 n’est pas au plus dénombrable, alors sa
tribu discrete n’est pas engendrée par les singletons de €2.



Exercice 12
Soit (£, &) un espace mesurable. Un élément A € £ est dit minimal si et seulement
s'il est non vide et si les seuls éléments de £ inclus dans A sont () et A lui-méme.

1. Quels sont les éléments minimaux dans la tribu grossiere 7 Dans la tribu discrete
?

2. Si EF = 1R, quels sont les éléments minimaux de la tribu Borélienne ?

3. Pour tout A € &, on considere 'application 64 : £ — IR telle que pour tout B € &,

5A(B):{1siBﬂA7é®

0 sinon .

Montrer que d4 est une mesure de probabilité sur (F,E) si et seulement si A est
minimal.

4. Supposons la tribu & finie.
a) Montrer qu’elle est engendrée par ses éléments minimaux.
b) En déduire que le cardinal de £ est nécessairement une puissance de deux.

* Exercice 13 Tribus vues comme des espaces vectoriels

Soit (E, E) un espace mesurable. On définit les opérations suivantes sur &:
e A+ B = AAB (différence symétrique), pour A, B € £ ;

e M =AsiA=1, M =0si A =0, pour tout A € Z/27Z.

1. Vérifier que £, muni de ces deux opérations, a une structure d’espace vectoriel sur
le corps Z/27Z.

2. Montrer que la tribu £ est finie si et seulement si elle est de dimension finie, vue
comme Z./27-espace vectoriel.

3. En déduire que si £ est finie, alors son cardinal est une puissance de deux.

Exercice 14 Théoréme de transfert

Soient (£, ) et (F, F) deux espaces mesurables, p une mesure sur (£, &) et g: E — F
une fonction mesurable. On note v = g#u la mesure image de p par g, i.e., la mesure sur
(F,F) définie par v(B) = u(g~'(B)), pour tout B € F.

1. Vérifier que v est bien une mesure sur (F, F).

2. Soit ¢ : F' — IR une fonction mesurable.

a) Montrer que ¢ € L'(v) <= ¢og e L' (u).



b) Vérifier que dans ce cas,

/E o(9(x)) du(x) = /F 6(y) du(y)

3. Soit ¢ : FF — IR, une fonction mesurable positive. Montrer que

[E o(g(x)) dp(z) = / 6(y) dv(y)

ol on attribue la valeur infinie a toute intégrale d’une fonction mesurable positive
non intégrable.

Exercice 15

Soit (E, £) un espace mesurable et u, v deux mesures o-finies sur (£, ). On suppose
que p admet une densité par rapport a v, que 'on note f. Montrer que :

1. Pour toute fonction mesurable ¢ : £ — R, ¢ € L'(u) < ¢f € L' (v) et que

dans ce cas,
/¢ ) dja(z /¢ (2)

2. Pour toute fonction mesurable positive ¢ : E' — IR,

[ #@)ano) = [ oo avta),

ou on attribue la valeur infinie a toute intégrale d’'une fonction mesurable positive
non intégrable.

2 Espaces de probabilités

2.1 Généralités

Exercice 16 Propriétés fondamentales

Soit (£2,.A, P) un espace de probabilité. Montrer les propriétés suivantes.
1. Pour tout A, Be A, ANB=0= P(AUB) = P(A)+ P(B).

Pour tout A, B € A, P(A\ B) = P(A) — P(AN B).

Pour tout A € A, P(AY) =1 — P(A).

Pour tout A,B € A, P(AUB) = P(A)+ P(B) — P(AN B).
Pour tout A,Be€ A, AC B= P(A) < P(B).

AN O
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Pour tout A, B € A, P(AU B) < P(A) + P(B).
Pour tout A,,..., Ay € A (N >2), P (Ufj:l An> <V P(4,).

Pour toute suite (A4,),>1 d’éléments de A, P (>, An) < Doy P(Ay).
Pourtous Be A, N > 1et Ay,..., Ay € Atels ql_le A,NA,, =0 pour tous entiers
distincts m,n € {1,...,N} et P(A,U...UAy) =1, P(B) =Y, P(BN A,).
10. Pour tout B € A et toute suite (A,),>1 d’éléments de A, telle que A, N A4, =0
pour tous entiers distincts m,n > 1 et P (s, An) =1, P(B) = Y72, P(BNA,).

© ®» N>

11. Pour toute suite croissante (A, ),>1 d’éléments de A, P (U An> = lim P(A,).

n—00
n>1

12. Pour toute suite décroissante (A, ),>1 d’éléments de A, P (ﬂ An> = lim P(A,).

n—00
n>1

Exercice 17 Expériences aléatoires

1. Dans chacun des cas suivants, définir un espace de probabilité adapté a ’expérience
aléatoire décrite.

a) On lance une piece équilibrée, et on observe sur quel c6té la piece tombe.

b) On lance une piece équilibrée deux fois, et on observe sur quel coté la piece
est tombé pour chaque lancé.

c¢) Une piece équilibrée est lancée deux fois, mais on sait uniquement si la piece
est tombé deux fois du méme coté.

d) On observe le résultat du lancé d'un dé a 8 faces, dont la probabilité d’obtenir
une face est proportionnelle au numéro inscrit sur cette face.

e) On dispose de deux urnes: la premiere contient une boule rouge et deux boules
bleues, la seconde contient trois boules rouges et une boule bleue. On lance
une piece équilibrée; si on obtient pile, on tire au hasard une boule dans la
premiere urne, sinon, on tire au hasard une boule dans la seconde urne. Les
boules d’'une méme couleur sont indiscernables.

2. Pour chacun des cas précédents, on s’intéresse aux propositions suivantes. Pour
chacune d’elles, déterminer si elle correspond a un événement (i.e., un élément de
la tribu) et, le cas échéant, déterminer cet événement (i.e., I'élément de la tribu
associé) et calculer sa probabilité.

a) “La piece tombe sur pile ou face” ; “La piece tombe sur face”

b) “La piece est tombée sur deux cotés différents” ; “La piece est tombée sur pile
au premier lancer”

¢) “La piece est tombée sur deux cotés différents” ; “La piece est tombée sur pile
au second lancer”



d) “Le résultat du dé est 2”7 ; “Le résultat du dé est pair”
e) “La piece est tombée sur pile” ; “Une boule rouge est tirée” ; “La boule bleue
qui avait été déposée en premier dans 'urne a été tirée”.

Exercice 18 Formule de Poincaré

Soit (€2, A, P) un espace de probabilité.
1. Montrer que pour tous A, B,C € A,

P(AUBUC) = P(A)+P(B)+P(C)—P(ANB)—P(ANC)—P(BNC)+P(ANBNC).

2. Généralisation: A l'aide d’une récurrence, montrer que pour tout entier n > 1 et

pour toute famille d’événements A, A, ..., A,
P(Ua)-ev 3 p(na)
i=1 k=1 1€P,({1,2,...,n}) iel

ou, pour tout k = 1,...,n, Pr({1,2,...,n}) est 'ensemble des partiesde {1,2,...,n}
qui continennent exactement k éléments.

Exercice 19 Espaces de probabilités finis
Soit € un ensemble fini non vide, qu’on note Q = {ay,...,a,} ou n = #.
1. Soient py, ..., p, des nombres réels quelconques, et soit P : P(2) — IR I'application
définie par
P(A) =) pillagea= > P
k=1 1<k<n:ap€A

pour toute partie A de Q2. Montrer que P est une probabilité sur (2, P(£2)) si et

seulement si py,...,p, > 0 et Zpk =1.

k=1
2. Vérifier que toute probabilité P sur (2, P(£2)) est entierement déterminée par les
nombres pr = P({ax}), k =1,...,n, qui sont positifs et dont la somme vaut 1.
Exercice 20 Limites inférieure et supérieure d'événements

Soit (€2,.A, P) un espace de probabilité et soit (A,),>1 une suite d’événements. On
définit les limites inférieure et supérieure de la suite (A4,),>1 de la maniére suivante:

liminf A, = G ﬁ A,

n—00
n=1p=n



et

limsup A, = ﬁ D Ap.

n—00
n=1p=n

Vérifier que liminf A,, est 'ensemble des w € 2 qui sont dans tous les A,, a partir
n—oo

d’un certain rang et que limsup A,, est 'ensemble des w € 2 qui sont dans une
n—oo
infinité de A,,.

Montrer que liminf A,, et limsup A,, sont dans A.
n—00 n—o0

Prouver que liminf A,, C limsup A4,,.
n—oo n—00

Montrer la suite d’inégalités suivante:

P (hm inf An) < liminf P(A4,) < limsup P(A,) < P (lim sup An) )

n—oo n—oo n—00 n—o00

2.2 Probabilités conditionnelles et événements indépendants

Exercice 21 Formule des probabilités totales

1.

Soit (€2, A, P) un espace de probabilité et soient By, By, ..., B, € A formant une
partition de €2, tels que P(Bg) > 0 pour tout k£ = 1,...,n. Soit A € A tel que
P(A) # 0. Montrer que, pour tout k= 1,... n,

_ P(A|By)P(By)
PWBA) = s paB) Py

On considere n urnes, et on suppose que pour k = 1,...,n, la k-eme urne contient
k boules rouges et n + 1 — k boules vertes. On lance un dé équilibré a n faces, et
on tire au hasard une boule dans 'urne portant le numéro obtenu au lancé du dé.
Soit k € {1,...,n} un nombre fixé. Sachant qu’on a tiré une boule verte, quelle
est la probabilite que le résultat du dé fat &k ?

Exercice 22

Soit (€2, A, P) un espace de probabilité. Soient A, B € A.

1.
2.

Montrer que A Il B < A Il B «— A 1l B® «— At 1 BC

En déduire que A et B sont indépendants si et seulement si les tribus engendrées
par A et B, i.e., 0({A}) et o({B}), sont indépendantes.

Supposons que P(A), P(B) > 0. Montrer qu’alors, si A et B sont disjoints, ils ne
peuvent pas étre indépendants.



Exercice 23

1. Soit (£2, A, P) un espace de probabilité et (A4,,),>1 une suite d’événements. Montrer
I’équivalence des assertions suivantes :

(i) Les événements A,,, pour n > 1, sont indépendants.

(ii) Pour tout ensemble I C IN* fini,

P (ﬂ Ai> =[P«

(iii) Pour tout n > 1, Ay,..., A, sont indépendants.

2. Soit (F, ) un espace mesurable et (&,),>1 une suite de sous-tribus de €. Soit P
une probabilité sur (E,£). Montrer I’équivalence des assertions suivantes :

(i) Les tribus &,, pour n > 1, sont indépendantes.

(ii) Pour tout n > 1, &, ..., &, sont indépendantes.

* Exercice 24

Soit (£2, A, P) un espace de probabilité. Pour tout A € A, onnote A = Aet A~! = AL,

1. Soient n > 1 et Ay,..., A, des événements. Montrer I’équivalence des assertions
suivantes :
(i) Les événements Ay, ..., A, sont indépendants.

(ii) Les tribus o(A;),...,0(A,) sont indépendantes.
(iii) Pour tout (eq,...,¢,) € {—1,1}",

P (ﬂ A;?@') TP

(iv) Pour tous sous-ensembles disjoints [ et J de {1,...,n}, ﬂAi et ﬂ A; sont

i€l jeJ
indépendants.
(v) Pour tous sous-ensembles disjoints I et J de {1,...,n}, U A; et U A; sont
i€l jeg
indépendants.

2. Soit (Ap)n>1 une suite d’événements. Montrer 1'équivalence des assertions suivantes
(on pourra utiliser des résultats de [’exercice :

(i) Les événements Aj, As, ... sont indépendants.

10



(ii) Les tribus o(A;),0(Az), ... sont indépendantes.
(iii) Pour tout n > 1 et pour tout (e1,...,&,) € {—1,1}",

P (ﬂ A?) ~ [T Pea)

i=1

(iv) Pour tous sous-ensembles disjoints / et J de IN*, ﬂ Ajet ﬂ A; sont indépendants.
i€l jed

(v) Pour tous sous-ensembles disjoints [ et J de IN*, U A; et U A; sont indépendants.

iel jeJ

Exercice 25
Soit (€2, A, P) un espace de probabilité.

1. Soient n > 1 et Ay,..., A, des événements indépendants. En utilisant la formule
de Poincaré (Exercice , montrer que AE, e ,A% sont indépendants.

2. Généraliser le résultat de la question précédente a une suite d’événements indépendants.

Exercice 26 Indépendance et indépendance mutuelle

1. On lance un dé non pipé deux fois, et on considere les événements suivants:
e A: “le résultat du second dé est 1, 2 ou 5”
e B: “le résultat du second dé est 4, 5 ou 6”
e (: “la somme des résultats des deux dés vaut 9”
a) Montrer que P(ANBNC) = P(A)P(B)P(C).
b) Montrer que P(AN B) # P(A)P(B), P(ANC) # P(A)P(C) et P(BNC) #
P(B)P(C). Que pouvez-vous en conclure ?
2. On considere cette fois-ci les événements suivants.
e A: “le résultat du premier dé est pair”
e B: “le résultat du second dé est pair”
e (. “la somme des résultats des deux dés est impaire”

Montrer que A, B,C sont deux a deux indépendants et que pourtant, ils ne sont
pas mutuellement indépendants.

Exercice 27 L'indépendance dépend du choix de la probabilité !

Soit 2 = {0,1} x {0,1}, muni de sa tribu discrete. On définit les deux mesures de
probabilité P et () de la maniére suivante :

P({(0,0)}) = P{(0,1)}) = P({(1,0)}) = 1/4

11



et
Q({(0,0)}) =1/2,Q({(0,1)}) = 1/6,Q({(1,0)}) = 1/6

(on vérifiera que ces égalités suffisent & définir P et () de maniére complete). Considérons
les événements A = {(0,0),(0,1)} et B = {(0,0),(1,0)}. Montrer que A et B sont
indépendants dans l'espace de probabilité (2, P(£2), P), mais qu’ils ne le sont pas dans
(2, P(2), Q).

Exercice 28 Indépendance et indépendance conditionnelle

On considere le lancé de deux dés non pipés et on définit les évéments suivants:
e A: “le résultat du premier dé est pair”

e B: “le résultat du second dé est impair”

e (. “la somme des résultats des deux dés est paire”

Montrer que A et B sont indépendants, mais qu’ils ne sont pas indépendants condition-
nellement & C' (i.e., pour la probabilité conditionnelle sachant C').

Exercice 29 Lemme de Borel-Cantelli

Soit (2,4, P) un espace de probabilité, et Aj, Ay, ... une suite d’événements. On
rappelle les deux définitions suivantes:

lim inf A, = [] ﬁ A,
n=1p=n

et
limsup A,, = ﬂ U A,y

n—00
n=1 p=n

1. Montrer que si Z P(A,) < oo, alors P(limsup,,_,, A,) = 0 (Premiere partie du

n=1
lemme de Borel-Cantelli).

2. On suppose, dans cette question que les événements A;, A, ... sont indépendants.

C
a) Montrer que (lim sup An> = lim inf AEL.
n—00 n—00
b) Montrer que pour toute suite d’événements By, By, . . .,

q
}&P(HBQ

k=n

P(liminf B,) = lim

n—oo n—o0

12



c¢) En déduire que

n—00 n—oo | g—oo

P(liminf A%) = lim llim f[ (1—P(Ay)

Indice: On pourra utiliser le fait que Ay, Ao, . .. sont mutuellement indépendants
si et seulement si Ag, Ag, ... sont mutuellement indépendants.

oo
d) On rappelle que pour tout z € IR, e=* > 1 —z. En déduire que si Z P(A,) =
n=1
oo, alors P(limsup,_,. A,) = 1 (Deuxiéme partie du lemme de Borel-
Cantelli).

3. Application (expérience de pensée) : si on place un chimpanzé d’espérance de
vie infinie devant un ordinateur et que celui-ci tape sur le clavier de maniere
completement aléatoire sans jamais s’arréter, montrer que dans la suite infinie des
caracteres obtenus, on pourra lire, une infinité de fois, A La Recherche du Temps
Perdu, sans aucune faute d’orthographe.

Exercice 30 Une application du lemme de Borel-Cantelli

On souhaite montrer qu’il n’existe pas de probabilité P sur (IN*, P(IN*)) telle que pour
tout entier n > 1, P(A,) = 1/n, ou A, est 'ensemble des multiples de n. Raisonnons par
I’absurde, et supposons l’existence d'une telle probabilité P.

1. Montrer que pour tout couple (p,q) de nombres premiers distincts, A, et A, sont
nécessairement indépendants.

2. Soit (pk)k>1 la suite croissante des nombres premiers. Montrer que la série de terme
général P(A,,),k > 1, est divergente.

3. Conclure en utilisant le lemme de Borel-Cantelli.

Exercice 31 Loi du zéro/un de Kolmogorov

Soit (2, A, P) un espace de probabilité et (A,),>1 une suite de sous-tribus de A,
supposées mutuellement indépendantes. On définit la tribu asymptotique comme

Aoo:ﬂa<UAp>.

n>1 p>n

1. Vérifier que A, est une sous-tribu de A.

2. Soit (A, )n>1 une suite d’éléments de A telle que pour tout n > 1, A,, € A,,. Vérifier
que limsup,, ., A, et liminf, ,,, A, sont des éléments de la tribu asymptotique
(cf. exercice 20| pour la définition des limites inférieure et supérieure d’une suite
d’ensembles).
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3. Soit A€ A, et n > 1. On va montrer que pour tout B € A,,, A 1L B.
a) Vérifier que A € o (Up2n+1 .Ap).
b) En déduire, avec une justification tres précise, que A 1L B (on pourra utiliser
les résultats de 'exercice @

4. Déduire des questions précédentes que tout élément de la tribu asymptotique est
indépendant de lui-méme.

5. En déduire la loi du zéro/un de Kolmogorov : tout élément de la tribu asymptotique
est de probabilité 0 ou 1.

6. Donner un contre-exemple a la loi du zéro/un de Kolmogorov, lorsqu’on enléeve
I’hypothese d’indépendance des sous-tribus.

7. A Taide de la loi du zéro/un de Kolmogorov, proposer une preuve alternative de la
deuxieme partie du lemme de Bortel-Cantelli : si (A,,),>1 est une suite d’éléments
indépendants de A, alors P(limsup,~; A,) € {0,1} et cette probabilité vaut 0 si
et seulement si la série des P(A,),n > 1 est convergente (cf. exercice [29)).

3 Variables aléatoires et lois de probabilités

Sauf mention contraire, toutes les variables aléatoires sont supposées définies sur un méme
espace de probabilité (£2,.4, P), méme si celui-ci n’est pas mentionné.

3.1 Généralités

Exercice 32

Soit (E, £) un espace mesurable quelconque et () une probabilité sur (F,E). Montrer
qu’il existe toujours une variable aléatoire a valeurs dans E dont la loi est (), quitte
a pouvoir choisir l'espace de probabilité sur lequel on définit la variable aléatoire (cet
exercice valide la légitimité des énoncés commencgant par “Soit X une variable aléatoire

de loi...”).

Exercice 33

Vérifier que deux variables aléatoires qui sont égales presque strement ont la méme
loi. La réciproque est-elle vraie ?

Exercice 34

Soit X une variable aléatoire a valeurs dans un espace mesurable (E, ). Supposons
que X € A presque surement, ou A € £. Soit f : A — F une fonction mesurable a valeurs
dans un espace mesurable (F, F).
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1. Montrer qu'on peut définir une variable aléatoire Y a valeurs dans F', telle que
pour tout w € X 1(A), Y(w) = f(X(w)).

2. Vérifier que si Y et Z sont deux variables aléatoires dans F' satisfaisant Y (w) =
Z(w) = f(X(w)) pour tout w € X'(A), alors Y = Z presque sirement. On
s’autorise, abusivement, a noter de telles variables aléatoires “f(X)”, méme si
f(X) n’est pas définie sur tout €.

3. Déduire des questions précédentes qu’on peut bien définir :
a) 1/X, lorsque X ~ N(0,1) ;
b) log(1/X) lorsque X ~ U([0,1]) ;
c) VX lorsque X est une variable aléatoire réelle de loi exponentielle.

* Exercice 35 Support d'une loi

Soit E un espace métrique muni de sa tribu borélienne B(F). Soit () une probabilité
sur (E,B(FE)). On appelle le support de @ I'ensemble des = € E tels que pour tout ¢ > 0,
Q(B(z,e)) > 0, ou B(z,¢) est la boule fermée de centre x et de rayon e.

1. Montrer que le support S de ) est fermé et non vide.

2. En déduire que S € B(E).

3. Supposons E séparable et complet. On cherche a montrer que Q(SB) = 0. Sup-
posons, par l'absurde, que Q(SE) > 0.

a) Montrer que SC possede un sous-ensemble dénombrable dense, qu’on notera
G.

b) Vérifier que S® C {J, ., B(x, 1).

¢) Montrer qu'il existe alors x; € G tel que Q(B(xy,1)) > 0.

d) Avec un raisonnement similaire, montrer qu’on peut construire une suite
(2 )n>1 d’éléments de G telle que pour tout n > 1, B(z,41,2~ ")) C B(z,,2™)
et Q(B(zp,27™) > 0.

e) Vérifier que la suite (z,),>1 est de Cauchy.

f) Obtenir une contradiction et conclure.

4. Déterminer le support des lois suivantes sur (IR, B(IR)) :
a) U([0,1])

)

)

) Exp(1)

) Ber(1/3)
) B(8,2/3)

YU({1,2,3,4,5,6}).

) La loi admettant une densité par rapport a la mesure de Lebesgue, donnée
par f:x € R+ 2xlgcper-
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3.2 Lois et variables aléatoires discretes

Exercice 36

Soit E un ensemble au plus dénombrable et soit X une variable aléatoire dans (E, P(E)).
Montrer que X admet une densité par rapport a la mesure de comptage de E, donnée
par sa fonction de masse, i.e., la fonction v € £ — P(X = x).

Exercice 37

Soit E un ensemble au plus dénombrable, muni de sa tribu discrete. Soit f: E — R

une fonction positive telle que Z f(z) = 1. Montrer qu’il existe une unique loi de

z€E
probabilité sur E dont f est la fonction de masse.

Exercice 38

Soit X une variable aléatoire dans un espace mesurable (£, £) dont la tribu € contient
tous les singletons. On rappelle qu’une variable aléatoire X dans FE est dite discrete si et
seulement s’il existe un sous-ensemble au plus dénombrable F' de E tel que P(X € F) = 1.
Montrer que X est discrete si et seulement si P(X € A) = 1, ou A est 'ensemble des
atomes de X (on vérifiera que A € £).

Exercice 39 Exemples de lois discretes

1. On lance deux dés équilibrés de maniere indépendante, et on note X le résultat
du premier dé, Y le résultat du second dé. Montrer que la loi de (X,Y") est la loi
uniforme sur {1,...,6}%

2. Si F est un ensemble fini non vide, on rappelle que la loi uniforme sur £ (muni
de sa tribu discrete) est la probabilité dont la densité par rapport a la mesure de
comptage de E est constante.

a) Quelle est la valeur de cette constante ?
b) Est-il possible de définir la loi uniforme sur un ensemble infini dénombrable 7

3. Soit E un ensemble fini non vide, et soit (X,Y’) une variable aléatoire dans £ x E
(muni de sa tribu discrete) de loi uniforme sur £ x E. Montrer que X et Y ont
toutes deux la loi uniforme sur E.

4. Soit E = {1,...,6} et soit (X,Y) une variable aléatoire sur £ x E (muni de
sa tribu discrete) telle que, pour tout (z,y) € {1,...,6}* P((X,Y) = (x,y)) est
proportionnelle a x + y. Calculer les lois de X, Y et X + Y.

Exercice 40 Fonctions de masse

Soit (F, £) un espace mesurable dont £ contient tous les singletons.

1. Soit f: E — IR une fonction satisfaisant les propriétés suivantes :
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e Pour tout z € E, f(z) > 0;
e [ensemble des = € FE tels que f(z) > 0 est au plus dénombrable ;

Z f(z) =1 (la somme ayant un sens grace a la propriété précédente).
el

a) Vérifier que f est mesurable.

b) Démontrer qu’il existe une unique loi discrete sur (£, £) dont f est la fonction
de masse.

2. Soit X une variable aléatoire a valeurs dans F et f sa fonction de masse.
a) Montrer que f est mesurable, positive, que {z € E : f(x) > 0} est au plus
dénombrable et que > . f(z) <1
b) Montrer que X est discrete si et seulement si ) _p f(z) = 1.

Exercice 41

1. Soient (E,€&) et (F,F) deux espaces mesurables. Soit f : £ — F une fonction
mesurable et X une variable aléatoire a valeurs dans F. Vérifier que si X est
discrete, alors f(X) 'est aussi.

2. Soient X7i,...,X, des variables aléatoires discretes, a valeurs dans des espaces
éventuellement différents. Montrer que (X3,...,X,,) est une variable aléatoire
discrete.

Exercice 42

Vérifier que U({0,1}) = Ber(1/2).
3.3 Densités

Exercice 43 Unicité presque partout de la densité

Soit (E, £) un espace mesurable quelconque et () une probabilité sur (F, E). Supposons
que @ admet deux densités f et g par rapport a v. Montrer qu’alors, f(z) = g(x) pour
v-presque tout x € F.

Exercice 44

Soit (F,€&) un espace mesurable et v une mesure sur (E,&). Soit f : E — R une
fonctlon p081t1ve et mesurable satisfaisant [ f p f(x)dv(z) = 1. Pour tout B € £, on pose

= s/

1. Vériﬁer que Q est une probabilité sur (E,E) et qu'elle admet une densité par
rapport a v, donnée par f.

2. En déduire qu’il existe une variable aléatoire a valeurs dans FE de densité f par
rapport a v.
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Exercice 45
Soit T' > 0 un réel fixé. Soit X une variable aléatoire réelle de loi exponentielle de
parametre 1. Soit Y = min(X, 7).
1. La variable aléatoire Y admet-elle une densité par rapport a la mesure de Lebesgue
?

2. Montrer que Y admet une densité par rapport a A + dr, ou A est la mesure de
Lebesgue de IR et déterminer cette densité.

Exercice 46

Montrer que toute variable aléatoire admet une densité par rapport a une certaine
mesure.

3.4 Lois marginales, lois jointes et variables aléatoires indépendantes

Exercice 47

Soient X et Y deux variables aléatoires définies sur un méme espace de probabilité
et a valeurs dans deux espaces mesurables éventuellement différents. Supposons X et Y
discretes. Montrer que X et Y sont indépendantes si et seulement si pour tout atome x
de X et tout atome yde Y, P(X =z,Y =y) = P(X =2)P(Y =vy).

Exercice 48

Soient X et Y deux variables aléatoires de loi de Bernoulli. Montrer qu’elles sont
indépendantes si et seulement si P(X =1,V =1)=P(X =1)P(Y =1).

* Exercice 49 Existence de variables de Bernoulli indépendantes (1)

1. Soit 2 = {0, 1}, muni de sa tribu discrete A.
a) Existe-t-il une probablité P sur (£2,.4) et une variable aléatoire X définie sur
(Q, A, P) telles que la loi de X soit la loi de Bernoulli de parametre 1/2 7
b) Peut-on construire une probablité P sur (£2,.4) et deux variables aléatoires X
et Y sur (2, 4, P) telles que X et Y sont i.i.d de loi de Bernoulli de parametre
1/27
2. Soit n > 2 un entier quelconque. Dans cette question, nous allons démontrer qu’on
peut construire n variables aléatoires réelles i.i.d de loi de Bernoulli de parametre
1/2, des lors qu’on définit ces variables aléatoires sur espace mesurable (€2, A) assez

riche. Soit 2 = {0,1}", muni de sa tribu discrete A. Pour ¢ = 1,...,n, on pose
X; : 2 — IR la fonction qui a chaque élément de € associe sa i-eme coordonnée.
a) Vérifier que X; est bien mesurable, quel que soit i = 1,...,n.

b) Soit P la mesure de probabilité uniforme sur (€2,.4). Montrer que Xi,..., X,
sont alors des variables aléatoires i.i.d de loi de Bernoulli de parametre 1/2.
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c¢) Adapter la construction précédente au cas o on souhaite construire n variables
aléatoires i.i.d de loi de Bernoulli de parametre p € [0, 1].

* Exercice 50 Existence de variables de Bernoulli indépendantes (2)

Dans cet exercice, on propose la construction d’une suite (infinie) de variables aléatoires
i.i.d de loi de Bernoulli de parametre 1/2.
Soit €2 = [0, 1] muni de sa tribu borélienne, notée A, et soit P la mesure de probabilité
uniforme sur (€2,.4). Pour tout entier n > 1, soit X, : 2 — IR la fonction qui a tout
[e.9]

. N , . . . , . a N
w € [0, 1] associe sa n-eme décimale en base 2. Autrement dit, si on écrit w = E U

(2
—, O
21
i=1
(a;);>1 est une suite d’éléments de {0, 1} qui ne stationne pas a 1, alors X,(w) = a,, (on
pourra vérifier que la suite des a;, appelée décomposition dyadique de w, est unique, pour
chaque w € [0, 1]).
1. Vérifier que pour tout n > 1, X, est une variable aléatoire.
2. Vérifier que pour tout n > 1, X,, suit la loi de Bernoulli de parametre p.

3. Vérifier que X1, Xo, ... sont indépendantes (Indication: on vérifiera que pour tout
n>1, Xi,..., X, sont indépendantes).

* Exercice 51 Existence de variables aléatoires indépendantes

Soit (E, &) un espace mesurable quelconque et @ une mesure de probabilité sur (E, £).
Le but de I'exercice est de montrer que pour tout entier n > 2, il existe des variables
aléatoires Xy, ..., X, a valeurs dans F, i.i.d, de loi Q).

Soit n > 1 un entier fixé. Posons €2 = E™, muni de la tribu produit A = £%" et de la
mesure de probabilité produit P = Q®". Pour chaque ¢ = 1,...,n, soit X; : Q — F la
fonction qui a chaque élément de €2 lui associe sa i-eme composante.

1. Vérifier que X1, ..., X, sont des variables aléatoires.

2. Montrer qu’elles sont i.i.d, de loi Q).

3. Adapter la construction précédente pour montrer I'existence de variables aléatoires

Xq,...,X, dans F, indépendantes, de lois Q)1,...,Q,, oules Q;, 1 =1,...,n, sont
des mesures de probabilités données sur (E,E).

Remarque: on peut aussi construire des suites (infinies) de variables aléatoires i.i.d
de loi donnée dans un espace mesurable (E, E), mais une telle construction requiert
des outils plus élaborés, notamment, le théoreme de Carathéodory.

Exercice 52 Couplages

Soient (E1,&1), ..., (En, &) des espaces mesurables, ot n > 2 est un entier fixé. Pour
chaque i = 1,...,n, soit ); une loi de probabilités sur (£;, &;). Un couplage de Qq,...,Q,
est une loi sur (K X ... X E,,& ® ... ® &,) dont les lois marginales sont Q1, ..., Q.
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Autrement dit, un couplage de @Qq,...,Q, est la loi jointe de n’importe quel vecteur
aléatoire (X7, ..., X,,) satisfaisant X; ~ Q;,i =1,...,n.
1. Montrer qu’il existe toujours au moins un couplage de @)1, ..., Q,. Est-il unique
en général ?
2. Supposons que Q; = d,,,t =1,...,n,ou a1 € Fy,...,a, € E, sont fixés. Vérifier
qu’il existe un unique couplage de Q)+, ...,Q,.

3. Soient p, ¢ € [0,1]. Décrire 'ensemble des couplages de Ber(p) et Ber(q).

Exercice 53 Transport optimal

Soient E et F' deux ensembles finis non vides, de cardinaux respectifs m et n, et munis
de leurs tribus discretes. Dans la suite, on notera aq, ..., a,, les éléments de E et by,...,b,
les éléments de F'.

Soient P et () deux lois de probabilités sur E et F' respectivement. Un couplage de P
et ) est une loi sur le produit £ x F' dont les marginales sont données par P et @, i.e.,
la loi de n’importe quel vecteur aléatoire (X,Y), ot X est une variable aléatoire dans E
de loi P et Y est une variable aléatoire dans F' de loi ).

1. Rappeler pourquoi P et () sont entierement déterminées par la donnée de m + n
nombres réels positifs pi, ..., Pm, q1, ..., qu telsque p1+...+p = +...+q, = 1.

2. Soit IT un couplage de P et @ et soit M € IR™*™ la matrice dont les coefficients
sont donnés par M; ; = II({(a;, b;)}), i=1,...,m,j=1,...,n.
a) Vérifier que II est entierement déterminée par la matrice M, ;.
b) Vérifier que M1, = qet M"1,, = p, ot 1,, = (1,...,1) € R™, 1, =
(L,....,H) e R", p=(p1,---,pom) et = (q1,---,qn)-
¢) Réciproquement, vérifier que toute matrice M € R™*" satisfaisant M 1,, = ¢,
MT1,, =pet M;; > 0 pour tout i =1,...,met tout j =1,...,n, permet de
représenter un couplage de P et ().
3. Pourtouti=1,...,met j =1,...,n, fixons un nombre réel ¢; ; > 0, pouvant étre
interprété comme un cott pour effectuer une opération entre a; et b; (par exemple,
E est un ensemble d’usines et F' est un ensemble de distributeurs, et ¢; ; est un cout
de transport depuis 'usine a; vers le distributeur b;). On souhaite minimiser le
cout moyen associé a un couplage Il de P et @), c’est-a-dire a trouver un couple de
variables aléatoires X et Y, de lois respectives P et (), dont la loi jointe permet de
minimiser le cotit moyen défini comme C(II) = > 7", 3% | ¢;; P(X = a;, Y = b))

(par exemple, un bien donné est produit en proportions données par pi,...,Pn

dans chacune des usines, et chaque distributeur doit en recevoir une proportion
)

donnée par g, ..., qn).

a) Vérifier qu’on peut écrire C'(IT) comme Tr(C'T M), ot M est la matrice associée
au couplage IT comme défini dans la question précédente et C' € IR"™*" est une
matrice qu’on déterminera.
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b) Montrer que les solutions au probléme sont les solutions du probleme d’optimisation
linéaire suivant:

Tr(CM)
, s.c. M1, =gq,
min
Mermxn | MT1, = p,

MmEO,W:L...,m,jzl,...,n.

* Exercice 54 Transport optimal et distance en variation totale

Soit (E, £) un espace mesurable. Etant données deux probabilités P et @ sur (F, ), on
définit la distance en variation totale entre P et () par la quantité d(P, Q) = sup 4.¢ |P(A)—
QA)].

1. Vérifier que d définit une distance sur I'ensemble des probabilités sur (E, E).

2. Soient P et ) deux probabilités sur (E,E).

a) Vérifier qu'il existe une mesure o-finie o sur (F, &) par rapport a laquelle P
et (Q admettent toutes deux des densités, qu’on notera p et ¢ dans la suite.

b) Montrer que d(P,Q) = 3 [ |p(z) — q(z)| dv(z) (on pourra procéder en mon-
trant une double inégalité ; pour l'une d’elles, on pourra introduire l’ensemble
Ay ={z € E:p(x) > q(x)}, en justifiant qu’il est bien dans E ).

3. On supposera dans la suite que la diagonale D = {(z,z) = x € E} est un élément
de la tribu produit £ ® £ (proposer un exemple dans lequel ce n’est pas le cas).
Fixons de nouveau deux probabilités P et @ sur (E,&). Le but de cette question
est de montrer qu’on peut aussi écrire la distance en variation totale entre P et ()
comme la solution d’'un probleme de transport optimal :

. C .
d(PQ) = inf T(DY) = inf PX#Y)

ou C(P, Q) est 'ensemble des couplages de P et @, i.e., 'ensemble des probabilités
sur (E'x E,E®E) dont les marginales sont données par P et @), et ou le deuxieme
infimum est calculé sur 'ensemble des variables aléatoires X et Y a valeurs dans
E définies sur un méme espace de probabilité (€2, A, P), de lois respectives P et @
(vérifier que {w € Q: X(w) #Y(w)} € A).

Soient X et Y deux variables aléatoires quelconques dans E de lois respectives P
et Q.

a) Vérifier que pour tout A € &,

P(X £Y) > P(4) - Q(A).

b) En déduire que quelle que soit la loi jointe de X et Y, P(X #Y) > d(P, Q).
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¢) Soit « = d(P, Q) et posons A ={z € E : p(x) > q(z)}.
i — Vérifier que a € [0, 1].

ii — Si a =0, vérifier que P = () et que le résultat recherché est vrai.

iii — Si a = 1, vérifier que le résultat recherché est vrai, en prenant n’importe
quel couplage de P et Q).

iv — Supposons «a ¢ {0, 1}. Vérifier que la fonction f(x) = min(p(x), ¢(x))/(1—
«) est une densité sur (E, ) par rapport a v (ou on rappelle que p et g
sont les densités respectives de P et () par rapport a une mesure v).

v — Soient g(x) = IML@“ et h(z) = %p(x)]lx@, pour tout x € E.
Montrer que g et h sont des densités par rapport a la mesure v.

vi — Soient U, V,W, Z quatre variables aléatoires indépendantes, telles que:
U,V.W sont des variables aléatoires dans F admettant pour densités
respectives, par rapport a v, f,g et h, et Z suit la loi de Bernoulli de
parametre . Solent X = (1 - 2) U+ 2ZV et Y = (1 — 2)U + ZW.
Montrer que X et Y ont pour lois P et @) respectivement et que P(X #
Y)=d(P,Q).

3.5 Calcul de lois

Exercice 55

Soient X1,...,X, des variables aléatoires i.i.d de loi de Bernoulli de parametre p €
[0,1], ot n > 1 est un entier. Montrer que X; + ...+ X, ~ B(n,p).

* Exercice 56

Soit X une variable aléatoire réelle définie sur un espace de probabilité (€2, A4, P).
Supposons que X soit de loi binomiale de parametre (n,p), oun > 1 et p € [0, 1]. Existe-
t-il nécessairement n variables aléatoires réelles i.i.d X7, ..., X,,, définies sur (2, A, P), de
loi de Bernoulli de parametre p, telles que X = X; + ...+ X, (on pourra se ramener a

lexercice @) ?
Exercice 57

Soient X et Y deux variables aléatoires réelles indépendantes. On suppose que X € IN
et Y € IN presque strement.

1. Vérifier que X +Y € IN presque stirement.

2. Soient f et g les fonctions de masse de X et Y respectivement. Montrer que la
fonction de masse de X + Y, notée h, satisfait :

h(n) =Y f(k)g(n — k), ¥n € N.
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3. Déduire de la question précédente que la somme de deux variables aléatoires réelles
indépendantes de lois de Poisson (de parametres éventuellement distincts) suit une
loi de Poisson.

4. Généraliser le résultat précédent au cas d’un nombre fini quelconque de variables
aléatoires indépendantes de lois de Poisson.

Exercice 58 Difféomorphismes (1)

Les fonctions suivantes permettent-elles de définir un C*-difféomorphisme & valeurs
dans un ouvert de leur ensemble d’arrivée ? Le cas échéant, calculer le déterminant du
Jacobien de la fonction réciproque, sur le bon domaine.

1. ¢(z,y) = (z,y) pour z,y € IR;

2. ¢(x,y) = (xr,z +y) pour z,y € RR;
3. ¢(z,y) = (x,x +y) pour z,y € (0,00);
4. ¢(x,y) = (z,z +y) pour x,y € (0,1);
5. ¢(z,y) = (x +y,x —y) pour z,y € (0,1);
6. ¢(x,y) = (23,9®) pour x,y € IR;
7. d(xy) = (x 3 y®) pour z,y € (0, 00);
8. ¢(z,y) = (z +y,z/(z +y)) pour z,y € (0,00);
9. d(z,y) = (z +y,z/(x +y)) pour x,y € (1,00);
10. ¢(z,y) = (z,z/(x +y)) pour z,y € (1,00);
11. ¢(z,y) = (z/(z +y),y/(z +y)) pour z,y € (0, 00);
12. o
(

)
x) = Az pour z € IRY, o1 A € IR¥*? est une matrice inversible;

—_
@
<

x) = Az pour z € (0,00)%, ot A € R¥? est une matrice inversible.

Exercice 59 Difféomorphismes (2)

Dans chacune des questions suivantes, on définit une fonction f et on demande de
proposer une fonction A telle que le couple (f, h) définit un C'-difféomorphisme & valeurs
dans un ouvert a déterminer.

1. f(z,y) =z +y pour z,y € R?;

2. f(x,y) =z +y pour x,y > 0;

3. f(z,y) = zy pour z,y > 0;

4. f(z,y) =1/(x +y) pour z,y > 0;

5. f(z,y) =1/(x +y) pour z,y > 1;

6. f(z,y) =xz/(x+y) pour z,y > 0;

7. f(z,y) = 2% + y? pour z,y € IR*;

8. f(x,y) =z +ypour z,y € R? (d > 1);



9. f(z,y) =z +y pour z,y € (0,00)%;
10. f(z) = Az pour x € R?, oit A € IRP*? est une matrice de rang p, o 1 < p < d.

Exercice 60

Soit X = (X1, X») un vecteur aléatoire réel dans IR%2. On suppose que X admet une
densité par rapport a la mesure produit A ® u, ou A est la mesure de Lebesgue de IR
et p est la mesure de comptage de IN*, et que cette densité est donnée par f(x1,zs) =
Ce2m(@2+1) [0l si x> 0 et 29 € IN*, f(21,25) = 0 sinon, ott C' > 0 est un nombre fixé.

1. Déterminer la valeur de C.

2. Vérifier que Xy € IN* presque stirement.

3. Déterminer la fonction de masse de X5.

4. Rappeler pourquoi X; admet une densité par rapport a la mesure de Lebesgue, et
déterminer celle-ci.

Exercice 61

Soit (X,Y’) un vecteur aléatoire réel de loi uniforme dans {1,2,3,4,5,6}2. Déterminer
les lois de X et de Y.

Exercice 62

Soit (X,Y") un vecteur aléatoire réel de loi uniforme dans [a, b] x [, d], ou a, b, ¢, d sont
des nombres réels satisfaisant a < b et ¢ < d. On rappelle que pour tout compact K
d’intérieur non vide de IR?, la loi uniforme sur K est la probabilité P sur (IR?, B(IR?))
satisfaisant P(A) = Vf}gﬁg; ) pour tout A € B(IR?).

1. Déterminer les lois de X et de Y.

2. Montrer que X 1L Y.

3. Montrer que X +Y admet une densité par rapport a la mesure de Lebesgue, qu’on
déterminera.

Exercice 63

Soit (X,Y’) un vecteur aléatoire réel de loi uniforme sur la boule euclidienne unité de
IR2. Montrer que X + Y admet une densité par rapport a la mesure de Lebesgue, qu’on
déterminera.

Exercice 64

Soient X et Y deux variables aléatoires réelles indépendantes. On suppose que X suit
la loi exponentielle de parametre 1 et que Y suit la loi de Poisson de parametre 1. Montrer
que X 4+ Y admet une densité par rapport a la mesure de Lebesgue.

Exercice 65
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Soit X ~ N5(0, I5). Montrer que || X||? suit la loi exponentielle de parametre 1/2, ot
| - || est la norme euclidienne de IR* (on pourra utiliser un changement de variable en
coordonnées polaires rigoureusement justifié).

Exercice 66

Soit 1 € R? et ¥ € R¥™? une matrice symétrique définie positive, ott d > 1. Soit X
un vecteur aléatoire de taille d de loi Ny(p, X). Pour tout i = 1, ..., d, vérifier que X;, la
i-eme coordonnée de X, suit la loi N (1, 2; ;).

Exercice 67 Exercice préliminaire sur les vecteurs gaussiens

Soit X ~ Ny(p, X)), ot d > 1, u € R et ¥ € IR¥*? est une matrice symétrique définie
positive. Soit p < d un entier strictement positif et A € IRP*¢ une matrice de rang plein
(i.e., de rang p). On cherche & démontrer que AX ~ N, (Ap, AL AT), a laide de la formule
de changement de variable.

1. Supposons que p = d. Vérifier que la fonction ¢ : IRY — IR? donnée par ¢(z) = Az,

pour tout x € IR¢, est un C''-difféomorphisme et conclure.

2. Supposons a présent que p < d.

a) Montrer qu'on peut définir une matrice B € IR%*¢ qui est inversible et dont
les p premieres lignes sont données par la matrice A (on pourra se contenter
de montrer 'ezistence d’une telle matrice, sans la construire explicitement).

b) Vérifier que la fonction 1 : R? — IR¢ définie par ¢(z) = Bz,z € R?, est un
C'*'-difféomorphisme.

c¢) Vérifier que BX = (X1, X3), ou X; = AX et X, est un vecteur aléatoire dans
R4,

d) En conclure que AX admet une densité par rapport a la mesure de Lebesgue,
et conclure.

e) Retrouver le résultat de 'exercice précédent.

Exercice 68

Soit X = (X1, X3) un vecteur aléatoire réel suivant la loi uniforme sur {(z,y) € IN? :
x>0,y >0,2+y <2}. Déterminer les lois marginales de X; et de Xo.

Exercice 69

1. Soit X = (X1, X3) un vecteur aléatoire réel de loi uniforme sur I'ensemble T =

{(:p,y) ceR?:2>0,y >0, g +% < 1}, ou a,b > 0 sont fixés. Montrer que X et

X5 admettent des densités par rapport a la mesure de Lebesgue, qu’on déterminera.

2. Soit X = (Xj,...,X,) un vecteur aléatoire réel de loi uniforme sur ’ensemble
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X iy N
T = (xl,...,xd)G(IR+)d:—1+...—|——d§1 , Ol ag,...,aq sont des nombres
aq aq

strictement positifs fixés. Pour chaque j = 1,...,d, vérifier que X, admet une
densité par rapport a la mesure de Lebesgue, et déterminer celle-ci.

Exercice 70

Soit X une variable exponentielle de parametre A > 0. Montrer que X? et v/ X sont
continues et déterminer leurs densités.

Exercice 71

Soit. X une variable aléatoire de Cauchy, i.e., une variable aléatoire réelle admet-
tant pour densité, par rapport a la mesure de Lebesgue, la fonction définie par f(z) =
m, x € R. Montrer que X et 1/X ont la méme loi.
Exercice 72

1. Soient X et Y deux variables aléatoires réelles continues, de densités respectives f
et g. On suppose que X et Y sont indépendantes. Montrer que X + Y admet une
densité, donnée par la convolution de f et g, i.e., la fonction f % g définie par

fxgla) = /R fWgle—y)dy, VreR.

2. Soient X et Y deux variables aléatoires indépendantes de lois respectives N'(j1, o%3)
et N'(pz,03), ot pu1, 2 € R et 02,02 > 0. Déduire de la question précédente la loi

de X +Y.

3. Soit n € IN* et soient Xi,..., X, des variables aléatoires indépendantes de lois
respectives N (p;,02),i = 1,...,n. Déduire des questions précédentes la loi de
Xi+...+X,.

4. Pour tous k € IN* et A > 0, on définit la loi Gamma de parametres k et A comme
la loi continue sur IR de densité :

Ak

k—1_—Ax
ml’ e ]lx>0a r € R.

fea(z) =

a) Montrer que la loi exponentielle de parametre A > 0 est une loi Gamma dont
on déterminera les parametres.

b) Démontrer que la somme de deux variables aléatoires i.i.d de loi exponentielle
de parametre A > 0 suit une loi Gamma, dont on déterminera les parametres,
en fonction de A.

c) Soit n € IN*. Démontrer que la somme de n variables aléatoires i.i.d de loi
exponentielle de parametre A > 0 suit une loi Gamma, dont on déterminera
les parametres, en fonction de .
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Exercice 73 Lois Gamma

Pour tous réels a > 0 A > 0, on définit la loi Gamma de parametres a et A, notée
['(a, A), comme la mesure de probabilité sur (IR, B(IR)) admettant une densité par rapport
a la mesure de Lebesgue, donnée par :

A% 1w
fa)\(x) = F(a)xa 16 A ]lx>0a rze€R
ou I' est la fonction Gamma d’Euler (T'(¢) = [, 2'"'e~* dz pour tout réel ¢ > 0).

1. Soient a, A > 0. Montrer que si X est une variable aléatoire de loi I'(c, \), alors
pour tout ¢t > 0, tX ~ I'(a, A\/t).

2. Soient Xi,...,X, des variables aléatoires réelles indépendantes telles que X; ~
(o, N),i=1,...,noun € IN* ay,...,a, >0et A\ > 0. Montrer que X; + ...+
Xp~T(ag+ ...+ ap, A).

3. Soit X ~ N(0,1). Montrer que X? ~ T'(1/2,1/2).

4. Soient Xi,...,X, des variables aléatoires i.i.d de loi normale centrée réduite.
Déduire des questions précédentes que X7 + ...+ X2 ~ I'(n/2,1/2). On appelle
aussi cette loi la loi du chi-2 a n degrés de liberté et on la note x2.

5. En particulier, déduire que si X est un vecteur aléatoire de taille n > 1 suivant la
loi NV,,(0, I,,), alors || X3 ~ x2.

Exercice 74

Soit Q = {1,2,3,4,5,6}%, A = P(Q) et P la loi uniforme sur Q. Pour tout w =
(wr,wsz) € 2, on note X (w) = wy et X(w) = wy. Montrer que X et Y sont deux variables
aléatoires réelles indépendantes et de méme loi.

Exercice 75

1. Soit (X,Y) un vecteur aléatoire uniformément distribué dans le disque {(z,y) €
IR? : 22 +y* < 1}. Montrer que X et Y sont identiquement distribuées, continues,
et calculer leur densité. Sont-elles indépendantes 7

2. Soit (X, Y, Z) un vecteur aléatoire uniformément distribué dans la boule {(x,y, z) €
R3 : 2% + y? + 22 < 1}. Montrer que X,Y et Z sont identiquement distribuées,
continues, et calculer leur densité. Sont-elles indépendantes 7

3. Soit (Xi,...,X4) un vecteur aléatoire uniformément distribué dans la boule eu-

clidienne unité de IR?. Pour tout k = 1,...,d, déterminer la densité du vecteur
aléatoire (X7, ..., Xx).

Exercice 76
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Soient X7,..., X, des variables aléatoires gaussiennes indépendantes. Montrer que
pour tous réels a4, ..., a,, a1.X,+. ..+ a,X, suit une loi normale, dont on déterminera les
parametres en fonction des parametres respectifs des X;,7 = 1,...,n (on pourra raisonner
par récurrence).

Exercice 77

Soient X et Y deux variables aléatoires i.i.d de loi exponentielle de parametre A > 0.

X Y
X1v et Xiv Ces deux variables sont-elles indépendantes 7

Déterminer les lois de

Exercice 78

Soient X et Y deux variables aléatoires indépendantes, de lois respectives N(0, 0?) et
N(0,72), ot 0% et 72 sont des réels strictement positifs. Déterminer (apres avoir justifié
son existence) la densité de X/Y par rapport a la mesure de Lebesgue.

Exercice 79 Projection d'une loi uniforme

Soit X un vecteur aléatoire de loi uniforme sur la boule euclidienne de centre 0 et de
rayon Vd, dans R%.

1. Déterminer la fonction de répartition de X5, la premiere coordonnée de X.

2. En déduire la densité de X; par rapport a la mesure de Lebesgue. On note fy :
R — IR cette densité.

3. Montrer que pour tout t € R fixé,

e—t2/2
fd(t) d—>—oo> \/% .

Autrement dit, la loi de X; s’approche (dans un sens qui sera rendu précis dans
I'exercice [224]), en tres grande dimension, de la loi normale centrée réduite.

Exercice 80 Lois images

Soient (E,E) et (F,F) deux espaces mesurables, P une mesure de probabilité sur
(E,€) et f: E — F une fonction mesurable. On note f# P la mesure image de P par f,
i.e., pour tout B € F, (f#P)(B) = P(f~'(B)).

1. Vérifier que f#P est une mesure de probabilité sur (F,F).

2. Soit X une variable aléatoire définie sur un espace de probabilité (€2, A, P), a
valeurs dans un espace mesurable (E, £). Vérifier que la loi Py de X est simplement
donnée par X#P.

3. Déterminer f# P dans les cas suivants (lorsqu’on ne reconnaitra pas une loi usuelle,
on déterminera la densité de f# P par rapport a une mesure de référence sur un
espace mesurable approprié) :
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a) P=U([0,1]) et f(x) =2z, VzeR.

b) P=U([0,1]) et f(z)=1—2z, VzeR.

c) P=U([0,1]) et f(z) =ax+b, VreR,oua>0etbelR.
d) P=N(0,1) et f(z) =ax+b, VreRR,ouabel.

e) P=CE&xp(\) et f(x) =ax, VzelR,ou\a>0.

£y P=N(0,1) et f(z) =1/, VrelR"

g) P=U([0,1]) et f(z) =2", VreR,ounelN.

h) P=U([0,1]) et f(z) =+/z, VzeR,.

1) P=N(0,1) et f(z)=2", VrelR, ounelN.

j) P=N5(0,L) et f(z,y) =2z +y, V(r,y)e R

k) P = Ny(u,2) et f(x) = Az +b, Vz € R? ot u € RY X est une matrice

symétrique réelle, semi-définie positive, A € RP*¢ b € IR?, d,p € IN*.
) P=Ny(0,1,) et f(z,y) =2>+y% Vr,y€R.

Exercice 81

Dans chaque question, on vous donne une fonction, qui dépend de certains parametres,
et on vous dit que cette fonction est une densité par rapport a la mesure indiquée. En
faisant le moins de calculs possible (voire, dans certains cas, aucun calcul, ni méme de
téte), reconnaitre la loi correspondante, en indiquant juste le domaine dans lequel doivent
se trouver les parametres.

1. f(z) = e®1,59, Vz € IR, avec la mesure de Lebesgue de IR.

. f(z) = e®*thrte Wr e IR, avec la mesure de Lebesgue de R.

= <% Yz e NN, avec la mesure de comptage de IN.

z!

= Cam—zfs, Vz € IN, avec la mesure de comptage de IN.

)
)
x) =Ca” Vx €N, avec la mesure de comptage de IN.
)
) = Cls<p<so, Vo € IN, avec la mesure de comptage de IN.
)

= Y _ Vzc R, avec la mesure de Lebesgue de IR.

e e
o s s

. flx) = Cer'Aztble vy c RY (A est une matrice et b est un vecteur), avec la
mesure de Lebesgue de IR.

9. f(x) =ax+b, Vze{0,1}, avec la mesure de comptage de {0, 1}.
10. f(z) = Ca®, Vx € {0,1}, avec la mesure de comptage de {0, 1}.

3.6 Fonctions de répartition

Exercice 82 Rappels de cours

Soit X une variable aléatoire réelle. On appelle la fonction de répartition de X la
fonction F': R — IR définie par F(z) = P(X < z), pour z € R.
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1. Déterminer, et tracer le graphe de la fonction de répartition de X lorsque X suit
la loi :
a) de Bernoulli de parametre p € [0,1] ;
b) exponentielle de parametre A > 0 :
¢) uniforme sur [0, 1].
2. Montrer que F' est croissante, lim F(x) =0 et lim F(z) = 1.

T——00 T—r00
3. Soit x € R.
a) Montrer que lim F(y) =P(X <z)et lim F(y) = F(z).
Yy—z,y<z Y—=T,Y>T

b) En déduire que F' est cadlag, i.e., F' est continue a droite et admet une limite
a gauche en tout point.

¢) En déduire aussi que F' est continue en x si et seulement si x n’est pas un
atome de X.

4. Montrer que F' détermine completement la loi de X.

Exercice 83 Loi du min, loi du max

1. Soitn > 1et Xy,..., X, des variables aléatoires réelles i.i.d. Exprimer les fonctions
de répartition de min(Xj, ..., X,) puis de max(Xy,..., X,).

2. Supposons que la loi des X; soit la loi exponentielle de parametre A > 0. Déterminer
la loi de min(Xy,...,X,).

3. Déterminer la densité du maximum de n variables aléatoires i.i.d uniformément
distribuées sur [0, 1], par rapport a la mesure de Lebesgue.

* Exercice 84 Caractérisation des fonctions de répartition
Soit F' : IR — IR une fonction croissante, cadlag, telle que lim F(zx) = 0 et
T——00

lim F(z) = 1. Le but de cet exercice est de montrer qu’il existe une variable aléatoire
T—r00
réelle dont F' est la fonction de répartition.

1. Pour tout ¢ €]0,1[, on définit F~(¢) = inf{x € R : F(x) > t}.

a) Montrer que pour tout z € IR et pour tout ¢ €]0, 1],

Flz)>t <= x> F (t).

b) Si F est strictement croissante et continue, comment appelle-t-on la fonction
F=7

Dans la suite, on admet que F'~ est une fonction mesurable (on pourra éventuellement le
démontrer).
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2. Soit U une variable uniforme sur [0, 1]. On définit
F-U)sio<U<1
P ( ) si
0 sinon.
a) Montrer que X est une variable aléatoire.
b) Montrer que F est la fonction de répartition de X.
* Exercice 85 Fonctions absolument continues

Une fonction F' : IR — IR est dite absolument continue s’il existe une fonction
mesurable f : IR — IR intégrable sur tout compact par rapport a la mesure de Lebesgue,
telle que pour tous a,b € IR avec a < b,

b
F(b) — F(a) :/ f(z)dz.

Dans ce cas, on dit que la fonction f est une dérivée au sens faible de F.

1.

Montrer que si ' : IR — IR est absolument continue, et si f et g sont deux dérivées
au sens faible de F', alors f = g A-presque partout, ou A est la mesure de Lebesgue
de IR. On s’autorise donc a parler, par abus de langage, de la dérivée au sens faible
de F.

Montrer que si F' et GG sont deux fonctions absolument continues, alors pour tous
A€ R, AF + uG est absolument continue.

Montrer que si F' et G sont deux fonctions absolument continues, alors F'G est
absolument continue (on pourra montrer que Fg + fG est une dérivée au sens
faible de FG, ou f et g sont des dérivées au sens faible de F' et G respectivement,
en justifiant rigoureusement tous les calculs : notamment, justifier que Fg + fG
est bien mesurable et intégrable sur tout compact).

4. Vérifier qu'une fonction absolument continue est nécessairement continue sur RR.

Proposer un exemple de fonction continue qui n’est pas absolument continue.

. Montrer qu'une fonction de classe C! sur IR est absolument continue et que sa

dérivée est une dérivée au sens faible.

Proposer un exemple de fonction absolument continue qui n’est pas dérivable sur
R.

Montrer qu'une fonction continue et C'! par morceaux est absolument continue (on
rappelle qu’une fonction F : R — R est dite C' par morceauz si et seulement
st pour tous a,b € IR avec a < b, il existe un entier n > 1 et des nombres a =
ag < a1 < ... < ap_1 < a, =>b tels que sur chaque (a;_1,q;), F' coincide avec une
fonction définie et C sur [a;_1,a;]).

Proposer un exemple de fonction absolument continue qui n’est pas C'! par morceaux.
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10. Montrer que toute fonction lipschitzienne est absolument continue.
11. Proposer un exemple de fonction absolument continue qui n’est pas lipshitzienne.

12. Soit X une variable aléatoire réelle et soit F' sa fonction de répartition.
a) Vérifier que si X admet une densité par rapport a la mesure de Lebesgue,
alors F' est absolument continue et sa dérivée au sens faible est la densité de
X.
b) Réciproquement, montrer que si F' est absolument continue, alors X admet
une densité par rapport a la mesure de Lebesgue, donnée par la dérivée au
sens faible de F.

Exercice 86 Définition et propriétés des quantiles

Soit X une variable aléatoire réelle et a € (0,1). On appelle quantile d’ordre o de X
tout nombre réel ¢ satisfaisant P(X < ¢q) > a et P(X > ¢q) > 1 — a. Lorsque a = 1/2,
on parle de médiane.

1. Déterminer I'ensemble des quantiles d’ordre v (o € (0,1) est fixé) de X lorsque X
suit la loi:
a) Bernoulli de parametre p € [0,1] (il faudra distinguer plusieurs cas suivant la
valeur de p);
b) Uniforme sur [0, 1];
c¢) Unforme sur [a,b] ot @ < b sont deux nombres réels;
d) Exponentielle de parametre A € (0, 1);
e) Géométrique de parametre p € (0, 1).
2. Montrer que si la loi de X est symétrique (i.e., —X et X ont la méme loi), alors 0
est une médiane de X. Est-ce nécessairement la seule ?

3. Montrer que I’ensemble des quantiles d’ordre o de X est toujours un intervalle
fermé, borné et non vide.

4. Soit I 'ensemble des quantiles d’ordre o de X. Montrer que P(X € I) =0, o [
désigne l'intérieur de 1.

5. Supposons que X admet une densité par rapport a la mesure de Lebesgue, et que
cette densité est strictement positive sur IR.
a) Vérifier que la fonction de répartition de X est continue et strictement crois-
sante sur IR.
b) En déduire que le dans ce cas-la, le quantile d’ordre o de X est unique, et
qu’il est donné par F~'(a), ot F~! est la bijection réciproque de la fonction
de répartition F' de X.
6. Supposons que X suit la loi normale centrée réduite. On note ® sa fonction de
répartition.
a) Vérifier que ® est une bijection de IR dans l'intervalle ouvert (0,1).
b) Montrer que pour tout t € IR, ®(t) = 1 — &(—1).
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c¢) Pour tout 8 € (0,1), on note gg l'unique quantile d’ordre g de X. Déduire
des questions précédentes que q1_o = —(q.

d) Déduire que si o € (0,1), alors P(|X| > q1_qa/2) = .

e) Soit Y une variable aléatoire de loi normale de parametre (p,0?), on u € R
et 02 > 0. Déterminer le quantile d’ordre o de Y en fonction des quantiles de
X, de p et de o.

Exercice 87

Soit n € IN* et soient X7, ..., X,, des variables aléatoires réelles i.i.d Soit N le nombre
de ces variables qui prennent des valeurs strictement positives, i.e.,

N=cad({t=1,...,n:X;>0}).
Déterminer la loi de N a I'aide de la fonction de répartition de X;.

Exercice 88

Soient X,Y, Z des variables aléatoires i.i.d de loi uniforme sur [0,1]. On note M la
variable aléatoire obtenue en prenant la valeur médiane entre X,Y et Z. Admet-elle une
densité par rapport a la mesure de Lebesgue 7 Le cas échéant, la déterminer.

Indication : calculer la fonction de répartition de M.

Exercice 89
Soient X1,..., X, des variables aléatoires réelles indépendantes, de lois exponentielles
de parametres Aq, ..., A, > 0, respectivement. Montrer que min(Xj, ..., X,) suit une loi

exponentielle dont on déterminera le parametre.

Exercice 90 Une loi sans mémoire

Soit X une variable aléatoire réelle positive satisfaisant:
o Vt>0,P(X >t)>0;
e Vs, t >0,P(X >t+s|X >t)=P(X > s).

1. Donner une interprétation a la seconde hypothese.
2. Soit F' la fonction de répartition de X, et soit G = 1 — F. Montrer que pour tout
s,t >0,
G(t+s) = G(t)G(s).

3. Posons a = G(1).
a) Déterminer G(0).
b) Déterminer la valeur de G(n), pour tout entier n > 0, en fonction de a.
c¢) En déduire la valeur de G(r), pour tout rationnel r > 0.
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d) En déduire la valeur de G(t), pour tout réel ¢ > 0, en fonction de a (attention
:on ne sait pas si G est continue - en revanche, on sait qu’elle est continue
a droite).

e) Montrer que a > 0.

f) Déterminer la valeur de G(t) pour tout réel ¢ < 0.

4. En déduire F, ainsi que la loi de X.

4 Espérances

4.1 Espérance de variables aléatoires

Exercice 91 Calcul d'espérances

Calculer I'espérance et la variance, lorsqu’elles existent (justifier leurs existences ou
non-existences), d'une variable aléatoire réelle suivant la loi:

1. Bernoulli de parametre p € [0, 1];
2. Binomiale de parametres n € IN* et p € [0, 1];

3. Poisson de parametre A > 0;

o

Géométrique sur IN* de parametre p €10, 1[;
Exponentielle de parametre A > 0;

Uniforme sur [a,b], o a < b;

N«

Gaussienne de parametres 1 € IR et o2 > 0;

8. Cauchy de parametres m € R et a > 0 (i.e., admettant la densité donnée par

f(z) = %m, x € R, par rapport a la mesure de Lebesgue).

Exercice 92

Vérifier les propriétés suivantes de ’espérance :
prop p

e Soit X un vecteur aléatoire réel dans IR¢ (d > 1) dont on note Xi,..., Xy les
coordonnées. Alors X est intégrable si et seulement si chaque X;, j =1,...,d est
intégrable, et le cas échéant, E[X] est le vecteur dont les coordonnées sont les E[X],
7=1,...,n.

e Linéarité : E[AX + pY| = AE[X]+ uE[Y], ou X, Y sont des vecteurs aléatoires réels
intégrables, et A\, u € IR.

34



e Positivité : si X est une variable aléatoire réelle telle que X > 0 p.s., alors E[X] > 0.
Si, de plus, E[X] =0, alors X =0 p.s.

o Inégalité triangulaire (1) : si X est une variable aléatoire réelle intégrable, alors
[ELX]] < E[X]].

e Inégalité triangulaire (2) : si X est un vecteur aléatoire réel intégrable, alors
IELX] < E{I[X].

Exercice 93 Conséquences matricielles de la linéarité de I'espérance

1. Vérifier que si X est un vecteur aléatoire réel de taille d intégrable et A € IRP*?
(p,d > 1), alors AX est intégrable et E[AX] = AE[X].

2. En particulier, vérifier que pour tout vecteur u € IR?, sous les hypotheses de la
question précédente, on a : E[u’ X] =« E[X].

3. On appelle matrice aléatoire réelle de taille p x ¢, ou p,q € IN*, une matrice de
taille p x ¢ dont chaque coefficient est une variable aléatoire réelle. Une telle
matrice aléatoire M est dite intégrable des lors que chacun de ses coefficients est
intégrable. On définit alors son espérance E[M] comme la matrice de taille p X ¢
dont les coefficients sont les espérances des coefficients respectifs de M. Vérifier
qu’alors, pour toutes matrices A € R™*? et B € IR?”*" sont des matrices données
(avec m,n € IN*), AM B est une matrice aléatoire de taille m x n intégrable, et
E[AM B] = AE[M]B.

4. Vérifier que si M est une matrice aléatoire intégrable, alors sa transposée M T Iest
aussi et E[M "] = E[M]".

5. Soit M une matrice aléatoire de taille p x p. Vérifier que Tr(M) est une variable
aléatoire réelle intégrable et que E[Tr(M)] = Tr(E[M]).

6. Plus généralement, montrer que si M est une matrice aléatoire de taille p X g,
intégrable, et que ¢ : IRP*? — IR™*™ est une application linéaire, ot p, ¢, m,n € IN*,
alors ¢(M) est une matrice aléatoire intégrable et E[¢(M)] = ¢(IE[M]) (on vérifiera
par ailleurs que toutes les questions précédentes étaient des cas particuliers de cette

question,).
Exercice 94
Soit n € IN* et X7, ..., X,, des variables aléatoires i.i.d de loi uniforme sur [0, 1].
1. Déterminer 'espérance et la variance de min(Xy, ..., X,).

2. Sans faire de calculs supplémentaires, en déduire 'espérance et la variance de
max(Xy,...,X,) (Indication : vérifier que 1 — Xy,...,1 — X,, sont i.i.d de loi
uniforme sur [0,1]).
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Exercice 95

Soit (€2, A, P) un espace de probabilité est A € A. Soit X = 1 4.
1. Vérifier que X est bien une variable aléatoire réelle. Quelle est sa loi 7

2. Vérifier que E[X]| = P(A).

* Exercice 96 Une preuve alternative de la formule de Poincaré

Soit (€2, A, P) un espace de probabilité, n € IN* et A;,..., A, € A.

1. Vérifier (sans récurrence) que

n

Iy, 4, => (D" Y 14,

ou, pour tout k = 1,...,n, Pr({1,2,...,n}) est 'ensemble des partiesde {1,2,...,n}
qui continennent exactement k éléments.

2. En prenant l'espérance, en déduire la formule de Poincaré (cf. exercice [18).

4.2 Moments de variables aléatoires

Exercice 97

Soit X une variable aléatoire réelle et p > 1. Montrer que X admet un moment d’ordre
p si et seulement si X — a admet un moment d’ordre p, quel que soit a € IR.

Exercice 98

Soit X une variable aléatoire réelle. Dans chacun de ces cas, calculer E[| X |*], pour tout
entier k£ > 1, et commenter sur la maniere dont cette quantité évolue avec k, notamment
lorsque k — oc.

1. X ~ Ber(p), oupe0,1];

2. X ~Exp(A),ouA>0;

3.X~U@1D-

4 X ~U([-1.1]);

5. X ~U([o, ])

6. X ~N(0,1) (on établira une formule de récurrence).
Exercice 99

Soit X une variable aléatoire réelle et positive presque surement.
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1. Montrer que pour tout k € IN*,
E[X*"] = k:/ t"P(X > t)dt
0

(les deux membres de 1'égalité pouvant étre infinis).

2. Plus généralement, montrer que pour toute fonction dérivable f: R™ — R, f(X)
est intégrable si et seulement si la fonction ¢ € RY — f/(¢t)P(X > t) est intégrable
par rapport a la mesure de Lebesgue, et le cas échéant,

E[f(X)] = f(0) + /OOO F)P(X > t)dt.

Exercice 100

Soit X une variable aléatoire réelle, positive presque.

1. Montrer que si E[X*] < 1 pour tout k¥ € IN*, alors X < 1 presque stirement (on
pourra utiliser les résultats de 'exercice précédent).

2. En déduire que X est bornée presque stirement si et seulement si la suite (E[X*]'/*) >,
est bornée.

Exercice 101 Définition de la covariance au-dela des v.a. de carré intégrable

1. Vérifier que si X est une variable aléatoire réelle intégrable et Y est une variable
aléatoire réelle bornée presque strement, alors on peut définir la covariance de X
et Y.

2. A partir de la question précédente, si X est une variable aléatoire réelle intégrable,
déterminer cov(X,1).

3. Soient p,q > 1 des réels conjugués, i.e., satisfaisant %—l—é = 1. Montrer que si
X € LP(P) et Y € L(P), alors on peut définir la covariance de X et de Y.

Exercice 102 Une formule alternative pour la (co)variance
1. Soient X et Y deux variables aléatoires réelles de carré intégrable. Montrer que
1
cov(X,Y) = §E[(X - XY —-Y")]

ou (X',Y’) est un vecteur aléatoire indépendant de (X,Y’) et de méme loi que
(X,Y).

2. Conclure qu’en particulier, pour toute variable aléatoire réelle X de carré intégrable,
1
Var(X) = JE[(X ~ X',

ou X’ est une variable aléatoire indépendante de X et de méme loi que X.
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Exercice 103
Soit. X un vecteur aléatoire réel de taille d > 1. On note X1, ..., X, les coordonnées
de X. Soit || - || une norme quelconque sur IR

1. Montrer que la variable aléatoire réelle ||.X|| est intégrable si et seulement si pour
tout k =1,...,d, X} est intégrable (X est alors intégrable).

2. Montrer que || X]|| est de carré intégrable si et seulement si pour tout k =1,...,d,
Xy, est de carré intégrable (X est alors de carré intégrable).

Exercice 104 Matrices de variance-covariance

Soit X un vecteur aléatoire réel de taille d > 1 de carré intégrable. On rappelle que
la matrice de variance-covariance de X est la matrice ¥ € IR%*¢ dont les coefficients sont
donnés par les covariances cov(X;, X;),1 <i,j < d, ot Xj,..., X, sont les coordonnées

de X.

1. Montrer que la matrice aléatoire X X " est intégrable (cf. exercice |93)).

2. Vérifier que ¥ = E[XX "] - E[X|E[X]" = E[(X — p)(X — u) "], on p = E[X].

3. En déduire que E[XX ] =% + up'.

4. Soit X’ une variable aléatoire de méme loi que X et indépendante de X. Montrer
que ¥ = 1E[(X — X)(X - X")7].

5. Montrer que pour toute matrice A € IRP*¢, oli p > 1, le vecteur aléatoire AX est
de carré intégrable et que sa matrice de variance-covariance est donnée par AXAT.

6. En particulier, vérifier que pour tout vecteur v € R?, Var(u'X) = u' Yu.

7. En déduire que ¥ est une matrice symétrique semi-définie positive.

8. Montrer que si ¥ n’est pas inversible, alors il existe un hyperplan affine H de IR?
tel que X € H presque surement.

9. En particulier, déduire que si 3 n’est pas inversible, alors X n’admet pas de densité
par raport & la mesure de Lebesgue de IRY. La réciproque est-elle vraie ?

10. Montrer que E[|| X 3] = || E[X]]]2 + Tr(%).

11. Plus généralement, montrer que pour toute matrice A € RP*¢, ot p > 1,
E[|AX|3] = [|Aul3 + Tr(ADAT)
(on pourra utiliser les résultats de l’exercice en remarquant pour commencer

que [|[AX|3 = THAXXTAT)).

Exercice 105 Matrices de covariance

Soient X et Y deux vecteurs aléatoires réels de tailles p, ¢ > 1 respectivement, de carré
intégrable.

1. Vérifier que la matrice aléatoire XY T est intégrable (cf. exercice .
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2. On définit la covariance de X et Y, qu’on note cov(X,Y’), comme la matrice de
taille p x ¢ dont le coefficient (4, j) est donné par cov(X;,Y;), pour touti =1,...,p
et 7=1,...,q.

a) Montrer que cov(X,Y) = E[(X —E[X])(Y -E[Y])"] = E[XY | -E[X]E[Y]".

b) Montrer que pour toutes matrices A € R™*? et B € R?", ou m,n € IN*,
cov(AX, BY) = Acov(X,Y)B (on pourra utiliser les résultats de Uezercice[99).

Exercice 106 Moments de variables aléatoires complexes

Soit Z une variable aléatoire complexe.

1. Vérifier que la partie réelle et la partie imaginaire de Z sont des variables aléatoires
réelles. On les notera X et Y, respectivement.

2. Soit p > 1. On dit que Z admet un moment d’ordre p si et seulement si la variable
aléatoire réelle |Z| admet un moment d’ordre p, ou | - | désigne le module.
a) Vérifier que Z admet un moment d’ordre p si et seulement si X et Y admettent
un moment d’ordre p.

b) Supposons que Z admet un moment d’ordre 1. On définit alors son espérance
comme E[Z] = E[X] 4+ (E[Y]. Vérifier qu’alors |E[Z]| < E[|Z]].

4.3 Espérances, convexité et inégalités

Exercice 107

Soit X une variable aléatoire réelle admettant un moment d’ordre 1. Montrer que si
|E[X]| = E[|X]], alors X est de signe constant presque sirement.

Exercice 108

Soit Z une variable aléatoire complexe admettant un moment d’ordre 1 (cf. exer-
cice[106). Montrer que |E[Z]| < E[|Z]] si et seulement s’il existe € IR, tel que e=*Z € IR
presque surement (autrement dit, Z est d’argument presque surement constant).

Exercice 109

Soit X un vecteur aléatoire réel de taille d > 1, intégrable. Montrer que [|E[X]|2 =
E[|| X]|2] si et seulement s’il existe un vecteur u € IR? et une variable aléatoire réelle Z
tels que X = Zu presque stirement.

* Exercice 110 Une preuve de I'inégalité Jensen

Soit X un vecteur aléatoire réel dans R? (d > 1) et f : R — IR une fonction convexe.
On suppose que X et f(X) sont intégrables.
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On note A I'ensemble des couples (u,t) € IR? x IR tels que pour tout z € R, u'z+t <
f(@).

1. Montrer que A # ().

2. Montrer que pour tout z € IR?,

f(z) =sup{u'z +t: (u,v) € A}.
3. En déduire que E[f(X)] > f(E[X)).

Exercice 111 Une seconde preuve de I'inégalité Jensen, et cas d'égalité
Soit X un vecteur aléatoire réel dans IR? (d>1)et f: R¢ — TR une fonction convexe.
On suppose que X et f(X) sont intégrables et on pose m = E[X].

1. Montrer 'existence d'un vecteur u € IR? tel que pour tout = € IR¢,
fz) > f(m) +u' (z —m)

(un tel vecteur u est appelé sous-gradient de f en m).
2. En déduire I'inégalité de Jensen.

3. Supposons f strictement convexe.
a) Montrer que pour tout x € R\ {m},

f(z) > f(m)+u"(x —m).

b) En déduire que si E[f(X)] = f(E[X]), alors X =m p.s.
¢) Soit X une variable aléatoire de loi exponentielle de parametre A > 0. Montrer
que E[X ] > .

Exercice 112 Support convexe

Soit C' C IR un ensemble convexe et soit X une variable aléatoire dans IR? intégrable
telle que X € C presque stirement.

1. Montrer que si E[X] € 9C, alors X € 0C presque strement.

2. Montrer que si de plus E[X] est un point extrémal de C', alors X = E[X]| presque
surement (on rappelle qu’un point extrémal de C est un point x € C tel que si
y,z€ Cite (0,1) etz = (1 —t)y+tz, alorsy =z = z).

Exercice 113 Inégalité de Holder

Soient p,q deux réels strictement positifs tels que % + % = 1. Soient X et Y deux

variables aléatoires réelles telles que X € LP(P) et Y € LI(P).
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1. Vérifier que p,q > 1.

. Vérifier que pour tout réels positifs a, b et pour tout A > 0,

APgP bl
+

b < .
= p g

. En déduire que XY € L'(P) et que

AE[XP] | E[Y]]

E|XY| <
X)) <= o

Y

quel que soit A > 0.
. En déduire 'inégalité de Holder :

E[|XY|] < E[|X|P]VPE[]Y |9

(indication : on optimisera l'inégalité de la question précédente en A > 0).

. Retrouver l'inégalité de Cauchy-Schwarz comme cas particulier de l'inégalité de

Holder.
* Exercice 114 Une généralisation de I'inégalité de Holder
Soient p1,...,p, des nombres réels strictement positifs tels que p% + ...+ pil =1
> 2) et Xy,...,X, des variables aléatoires réelles satisfaisant X; € LPi(P), pour tout

_1, ...,n. Montrer que X; ... X, € L'(P) et que

E[ X ... X,[] < E[| X[V B[ X,[Pr]

(on pourra démontrer ce résultat par récurrence).

* Exercice 115 Inégalité de Minkowski

Soient X et Y deux variables aléatoires réelles et p > 1 un réel quelconque. On suppose

que X,Y € LP(P).
1. Montrer que X +Y € LP(P).

2. Vérifier que | X||X +Y|P~L et |Y||X + Y|P~! sont intégrables et que

E[|X + Y] <E[|X||IX + Y]+ EB[Y||IX + Y]]

3. A Taide de l'inégalité de Holder, en déduire I'inégalité de Minkowski :

E[|X + Y17 < BXPT? + (Y]

41



Exercice 116 Inégalités entre moments

Soit X une variable aléatoire réelle. Montrer que pour tous réels p, g > 1 tels que p < ¢,
I’existence d’un moment d’ordre ¢ pour X implique 'existence d’'un moment d’ordre p et,
le cas échéant,

E[lX["]'7 < B[IX]7]

(on pourra obtenir ce résultat a I’aide de I'inégalité de Jensen ou de I'inégalité de Holder).

Exercice 117 Inégalité d'association de Chebychev

Soit X une variable aléatoire réelle et f et g deux fonctions croissantes de IR dans
R telles que f(X) et g(X) sont de carré intégrable. On souhaite montrer qu’alors, la
covariance entre f(X) et g(X) est positive.

1. Soit X’ une variable aléatoire réelle indépendante de X et de méme loi que celle-ci.
Montrer que (f(X) — f(X’))(g(X) — g(X")) est une variable aléatoire positive et
intégrable.

2. Conclure.

* Exercice 118 Une inégalité de Cauchy-Schwarz pour les matrices aléatoires

Soient X et Y deux vecteurs aléatoires réels de taille d (d > 1) de carré intégrable.

1.

2.
3.

4.

Montrer que E[XX ], E[YYT] et E[XY "] sont bien définies, et que E[XY '] et
E[Y X "] sont les matrices transposées I'une de lautre.

Dans toute la suite de I'exercice, on supposera que E[YY "] est inversible, et on
souhaite déontrer I'inégalité suivante:

EXYTEYY|'EYXT] < E[XXT]

au sens de l'ordre de Loewner pour les matrices symétriques réelles.
Vérifier I'inégalité dans le cas ou d = 1.
Soit M € IRP*P (p > 1) une matrice définie par blocs:

A B
(i)

ot A € R B e R CeRX, k+1=pet Aet C sont symétriques. On
suppose que C' est inversible. On appelle le complément de Schur de C' dans M
la matrice A — BC™'BT € IR¥*¥. Montrer que M est semi-définie positive si et
seulement si C' et son complément de Schur dans M le sont.

Soit M € IR?¥*% ]a matrice définie par blocs de la maniere suivante:

EXXT] E[XY]
M= (E[YXT] ]E[YYW) '



Montrer que M est I'espérance d’une matrice aléatoire presque sturement semi-
définie positive.

5. Conclure.

4.4 Caractérisation de la loi et de I'indépendance a I’aide de ’espérance et
des fonctions tests

* Exercice 119

Soient X et Y deux variables aléatoires définies sur un méme espace de probabilité
et a valeurs dans un espace mesurable (E, ). Montrer que les propriétés suivantes sont
équivalentes :

(i) X et Y ont la méme loi

(iii) Pour toute fonction mesurable et bornée f : E — R, E[f(X)] = E[f(Y)]
i

)
(ii) Pour toute fonction positive et mesurable f: E — R, E[f(X)] = E[f(Y)]
)
(iv) Pour toute fonction mesurable f : E — [—1,1], E[f(X)] = E[f(Y)].

Lorsque (E, &) = (R, B(IR)), vérifier que ces propriétés sont aussi équivalentes a la suiv-
ante :

(v) Pour toute fonction continue bornée f: R — R, E[f(X)] = E[f(Y)]

(indice : pour cette derniére propriété, on pourra vérifier que pour tout t € R, la fonction
L~y est la limite simple d’une suite croissante de fonctions continues et positives et
invoquer le théoreme de convergence monotone).

Exercice 120
Soient X et Y deux variables aléatoires réelles, toutes deux dans [0, 1] presque stirement.
On suppose que E[X™"] = E[Y"] pour tout n € IN*.

1. Vérifier que pour tout polynome P, E[P(X)] = E[P(Y)].

2. En déduire que pour toute fonction continue f : R — R, E[f(X)] = E[f(Y)]
(on pourra invoquer le théoreme de Weierstrass, qui indique que toute fonction
continue g : [0,1] — IR peut étre approchée arbitrairement bien, pour la norme
infinie sur [0, 1], par des polynomes).

3. En déduire que X et Y ont la méme loi (on pourra utiliser ’exercice précédent).

4. Plus généralement, vérifier que si deux variables aléatoires réelles sont bornées et
ont les mémes moments, alors elles ont la méme loi.
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5. Dans cette question, on propose un contre-exemple dans le cas de variables non
bornées. Soit U ~ N (0,1) et V une variable aléatoire admettant pour densité, par
rapport a la mesure de Lebesgue, la fonction f: x € R +— \/%6*5"2/2(1 + sin(7x)).

a) Vérifier que f est bien une densité par rapport a la mesure de Lebesgue.
b) Soient X = eV et Y = €¥. Montrer que E[X"] = E[Y™] pour tout n € IN*.

Exercice 121

Soient X et Y deux variables aléatoires réelles i.i.d de loi normale centrée réduite.
Montrer que X? + Y2 suit une loi exponentielle dont on déterminera le parametre.

Exercice 122

Soit X une variable aléatoire exponentielle de parametre A > 0 et soit Z une variable
de Bernoulli, de parametre 1/2, indépendante de X. Montrer que (27 —1)X est continue
et calculer sa densité.

Exercice 123

Soit X une variable aléatoire gaussienne centrée réduite (i.e., de parametres 0 et 1)
et soit Z une variable de Bernoulli, de parametre 1/2; indépendante de X. Montrer que
(2Z —1)X ala méme loi que X. Ces deux variables sont-elles indépendantes ?

Exercice 124

Soit X une variable aléatoire réelle continue, dont la densité est donnée par f(z) =
Ce 1l 2z € R, ott A > 0 et C est une constante de normalisation.

1. Calculer la valeur de C' en fonction de .

2. Pour tout = € IR, on note s(X) le signe de z: s(z) = 1six > 0, s(0) = 0 et
s(r)=—1siz <0.
a) Calculer les lois de s(X) et de | X].
b) Démontrer que s(X) et |X| sont indépendantes.
¢) Montrer que, plus généralement, si Y est une variable aléatoire réelle admet-
tant une densité paire par rapport a la mesure de Lebesgue, alors s(Y') et Y|
sont indépendantes.

Exercice 125

Soit X une variable aléatoire géométrique sur IN de parametre p € (0, 1) (i.e., pour tout
k€N, P(X =k)=(1—p)*p) et Y une variable aléatoire exponentielle de parametre
A > 0, indépendante de X. Vérifier que la variable aléatoire X + Y est continue et
déterminer sa densité par rapport a la mesure de Lebesgue.

Exercice 126
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Soient X et Y deux variables aléatoires indépendantes normales centrées réduites.
Montrer que X + Y et X — Y sont indépendantes.

(Dans [’exercice on montrera la réciproque : si X et Y sont deuxr variables
aléatoires réelles i.1.d telles que X +Y et X —Y sont indépendantes, alors X et'Y
sont nécessairement gaussiennes.)

Exercice 127

Soient X et Y deux variables aléatoires réelles i.i.d de loi exponentielle. Montrer que
min(X,Y) et | X — Y| sont indépendantes.

(Réciproquement, on pourrait montrer que si X et Y sont deuzr variables aléatoires
réelles 1.1.d admettant une densité par rapport a la mesure de Lebesque, qui est positive
sur Y et nulle sur R_ et telles que min(X,Y") et | X — Y| sont indépendantes, alors X
et Y suivent une loi exponentielle.)

Exercice 128

Soient X et Y deux variables aléatoires réelles i.i.d de loi géométrique sur IN*. Montrer
que min(X,Y’) et | X — Y| sont indépendantes.

Exercice 129
Soient X et Y deux variables aléatoires réelles i.i.d, admettant une densité f par
rapport a la mesure de Lebesgue. Soient U = min(X,Y') et V = max(X,Y).

1. Montrer que U et V admettent une densité jointe par rapport a la mesure de
Lebesgue, et calculer les densités marginales de U et V.

2. U et V sont-elles indépendantes ? On justifiera rigoureusement la réponse.

Exercice 130

Soit n > 1 et Xi,..., X, des variables aléatoires réelles i.i.d de loi exponentielle de
parametre 1. On pose

Y,=max X; et 2, = E —.
7
i=1

1<i<n

1. Montrer par récurrence que Y, et Z,, ont la méme loi.
E}Y,

Y] — 1.

Ogn n—oo

3. Si Xy,...,X, sont des variables aléatoires réelles i.i.d de loi exponentielle de
E [maxlgign XZ]

2. En déduire que

parametre A > 0, quelle est la limite de ?

logn

Exercice 131 Echantillon réordonné et statistiques d'ordre
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Soitn > 1et Xq,..., X, des variables aléatoires réelles i.i.d admettant une densité. On
réordonne Xi, ..., X, dans I'ordre croissant, et on note X(y),..., X, la liste réordonnée.
Par exemple, X(;y = min(X,...,X,), X9 est le second plus petit de Xi,..., X, et
Xy = max(Xy,..., X,).

Montrer que Xi, ..., X, sont deux a deux distincts, presque siirement.
Vérifier que X(y),..., X(,) sont bien des variables aléatoires.
Les variables aléatoires X(y), ..., X(,) sont-elles indépendantes 7

Pour k =1,...,n, calculer la fonction de répartition de X).

A o

Montrer que la loi jointe de X(yy,..., X,y admet une densité par rapport a la

mesure de Lebesgue de IR™, qu’on déterminera a I’aide de la densité et de la fonction

de répartition de Xj.

6. Montrer qu’il existe n variables aléatoires Ry, ..., R, telles que presque stirement,
on ait X = X(g,) pour tout k =1,...,n.

7. Montrer que Ry, ..., R, sont deux a deux distinctes presque siirement.

a) Pour k =1,... n, déterminer la loi de Ry.

b) Déterminer la loi jointe de Ry, ..., R,.

Exercice 132 Loi des écarts
Soient X, ..., X, des variables aléatoires réelles i.i.d, dont on note X (1), X(2), ..., Xy
I’échantillon réordonné dans ’ordre croissant.

1. En supposant que X; ~ Exp(A) pour un certain A > 0, déterminer la loi jointe de
Xay, X2 — Xa), X3y — X2 - -+, X(n) — X(n—1) (0n pourra utiliser les résultats de
Uezercice .

2. Supposons que X; ~ U([0, 1]). Déterminer la loi de chacune des variables suivantes:
X(l), X(g) — X(l), X(3) — X(z), c. ,X(n) — X(n,l), 1-— X(n). Ces variables sont-elles
indépendantes ?

* Exercice 133 Distances en probabilités définies a |'aide d'espérances

Soit (E,€) un espace mesurable et soit F une famille de fonctions mesurables de
E dans R. Etant données deux probabilités P et @ sur (E, &), on définit d(P,Q) =
suprer [E[f(X)] = E[f(Y)]]; ot X ~ Pet Y ~ Q.

1. Vérifier que la définition de d(P, Q)) ne dépend pas du choix du couple de variables
aléatoires X et Y de lois respectives P et Q.

2. Vérifier que d est symétrique et qu’elle satisfait I'inégalité triangulaire.

3. Supposons que F = {l.c4 : A € £}. Vérifier qu’alors, d définit une distance sur
I'ensemble des probabilités sur (£, &).

4. Supposons que F est 'ensemble de toutes les fonctions mesurables de E dans
[—1,1]. Vérifier qu’alors, d définit aussi une distance sur ’ensemble des probabilités
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sur (F, ). Vérifier qu’on obtient la méme distance que dans la question précédente.
On pourra aussi vérifier qu’on obtient la distance en variation totale, étudiée dans
Iexercice b4l

5. Supposons que (E, &) = (R, B(IR?)), ot d > 1. Dans chacun des cas suivants, d
définit-elle une distance ?
a)d=1let F={l:teR};
b) F={e™" :u e R (dans ce cas, | - | est & entendre comme module, dans la
définition de d) ;
o) F={u"-:ueR|u=1|};
d) F={f(u") :ue R f: R — [~1,1] mesurable} ;
e) F est la classe de toutes les fonctions 1-lipschitziennes de IR? dans R (d est
alors appelée distance de Wasserstein-1, trés utilisée en transport optimal).
* Exercice 134 Définition variationnelle des médianes

Soit X une variable aléatoire réelle admettant un moment d’ordre 1.

1.
2.

Vérifier que pour tout ¢ € R, | X — t| admet aussi un moment d’ordre 1.
Soit @ : IR — IR la fonction définie par ®(t) = E[|X —¢|], pour tout ¢ € IR. Vérifier
que ® est une fonction convexe et coercive (i.e., ®(t) p—— 00).

—00
En déduire que ® a au moins un minimiseur. Le but de I'exercice est de montrer
que les minimiseurs de ® sont exactement les médianes de X.

Soit t* une médiane de X. On va démontrer que pour tout t € R, ®(t) —P(¢t*) > 0,
avec égalité si et seulement si t est une médiane de X.
a) Vérifier que pour tout ¢ € R, on peut écrire

O(t) =2E[(X — )1y — E[X] +¢
=E[X] -t —2E[(X — )1 x].

b) Soit t € R tel que P(X >1t) < 1/2.
i — Vérifier que t > t* et que

O(t) — B(t*) = (t — ) (1 — 2P(X > 1)) — 2E[(X — t')Lpocxoi]-

ii — En déduire que
O(t) — (") > (t—t") (1 —2P(X > t"))
et que O(t) > O(t*).

¢) Montrer que, similairement, si t € R est tel que P(X < t) < 1/2, alors
O(t) > P(t).
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d) Déduire des questions précédentes que tout minimiseur de ¢ est nécessairement
une médiane de X.

e) Vérifier que si t,t' sont deux médianes de X, alors ®(t) = ®(t') (on pourra
démontrer une double inégalité).

f) Conclure.

5. Dans cette question, on ne suppose plus que X admette un moment d’ordre 1.
a) Montrer que pour tout t € R, | X — ¢| — | X| est intégrable.
b) En adaptant les raisonnements précédents (mais en tenant rigoureusement
compte des questions d’intégrabilité), montrer que I’ensemble des médianes de
X coincide avec I'ensemble des minimiseurs de la fonction ¥ : IR — IR définie
par ¥(t) = E[|X —t| — | X|], pour tout t € IR.

* Exercice 135 Définition variationnelle des quantiles

Soit X une variable aléatoire réelle et a € (0,1). Soit ¢, : R — IR la fonction définie
par (o (t) = atsit >0, l4(t) = (a—1)tsit <O0.
1. Vérifier que pour tout t € IR, la variable aléatoire £, (X —t) — €, (X) est intégrable.

2. Pour t € R, soit ®,(t) = E[lo(X —t) — {,(X)]. En adaptant vos réponses de
I’exercice précédent, montrer que l’ensemble des minimiseurs de ®, coincide avec
I’ensemble des quantiles d’ordre o de X.

4.5 Inégalités en probabilité

Exercice 136

Démontrer qu’au plus vingt pourcents des francais sont plus de cinq fois plus riches
que le francais moyen.

Exercice 137 Distance entre médiane et moyenne

Soit X une variable aléatoire réelle de carré intégrable. Soit m une médiane de X.
1. AVlaide de I'inégalité de Bienaymé-Chebychev, montrer que |m—E[X]| < y/2Var(X).

2. A laide de lexercice [134] vérifier que E[|X — m|] < E[|X — E[X]]].
3. En déduire que |E[X] —m| < y/Var(X).

Exercice 138 Inégalité de Chebychev-Cantelli
Soit X une variable aléatoire réelle de carré intégrable et t > 0.
1. Montrer que pour tout A > 0,

VarX + \?

IP[X—]EXEt]gW.
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2. Vérifier qu’on obtient 'inégalité de Bienaymé-Chebychev en prenant A\ = 0.
3. En optimisant le membre de droite de 'inégalité ci-dessus, déduire I'inégalité de
Chebychev-Cantelli :

VarX
PX-EX >t < ————
[ _]_VaurX—l—t2

(on remarquera que cette inégalité est strictement meilleure que l'inégalité de Bi-
enaymé-Chebychev : notamment, la borne obtenue est toujours plus petite que 1,
méme lorsque t est trés petit).

4. A Taide de l'inégalité de Chebychev-Cantelli démontrée plus haut, retrouver le
résultat de l'exercice précédent.

Exercice 139 Un intervalle de confiance
Soient X7q,..., X, des variables aléatoires i.i.d de loi de Bernoulli de parametre p €
[0,1], o n > 1. Dans une perspective statistique, a I’aide des valeurs prises par X7, ..., X,

(interprétées comme données), on cherche a estimer le parametre p de leur loi, supposé in-
connu. Un estimateur raisonnable est donné par la moyenne empirique X,, =n='>"" | X;.

1. Déterminer E[X,,] et Var(X,,).
2. Montrer que pour tout ¢t > 0,

- 1
PX,—p|l>t) < )
(10 =0l > 1) <

3. Fixons o € (0,1), pouvant étre interprété, dans la suite, comme un niveau de
confiance (en pratique, on choisit souvent o = 0.05).
a) Déterminer un réel t > 0 tel que | X,, — p| <t avec probabilité au moins 1 — a.

b) En fonction de a et ¢ > 0, déterminer un nombre n suffisant de données
permettant d’obtenir une erreur d’estimation de p d’au plus € avec probabilité
au moins 1 — a.
¢) Quelle valeur obtenez-vous pour a@ = 0.05 et ¢ = 0.1 ? Pour a = 0.05 et
e=0.017
4. On admettra, dans cette question, I'inégalité de Hoeffding : si Yi,...,Y,, sont des
variables aléatoires réelles i.i.d telles que 0 < Y; < 1 presque stirement, alors pour
tout réel t > 0,
P(|Y, —EY]| > t) < 272

a) En appliquant 'inégalité de Hoeffding, trouver un réel t > 0 tel que | X,,—p| < t
avec probabilité au moins 1 — a.
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b) En fonction de o et € > 0, déterminer une nouvelle valeur du nombre n
suffisant de données permettant d’obtenir une erreur d’estimation de p d’au
plus € avec probabilité au moins 1 — a.

c) Cette fois-ci, quelle valeur obtenez-vous pour o« = 0.05 et ¢ = 0.1 ? Pour
a=0.05ete=0.017

4.6 Fonctions caractéristiques

Exercice 140

Déterminer la fonction caractéristique d’une variable aléatoire réelle de loi :

1. Bernoulli de parametre p € [0,1] ;

o

Binomiale de parametre (n,p), oun > 1 et p € [0,1] ;
3. Géométrique sur IN de parametre p € [0, 1] ;

4. Uniforme sur [a, b], ot a < b.

Exercice 141

Soit z € C un nombre complexe de partie réelle strictement positive. On écrit z = a+ib
avec a € IR et b € R et on cherche a montrer que fooo e *dr=1/z.

1. Vérifier que l'intégrale est bien définie.

2. En effectuant des intégrations par parties successives, montrer que pour tout a €

R,
| e eostande =
e “cos(ax)dxr =
0 1+042
et que
/Oo ~sin(az) dz = ——
e Usin(ax)dr = .
0 1+CY2

3. Conclure.

4. En déduire une expression de la fonction caractéristique de la loi exponentielle de
parametre A > 0.

Exercice 142

A T’aide des fonctions caractéristiques, démontrer que la somme de n variables aléatoires
i.i.d de loi de Bernoulli de parametre p € [0, 1] suit la loi binomiale de parametres n, p.

Exercice 143

1. Déterminer la fonction caractéristique d’une variable aléatoire de Poisson de parametre
A > 0 (on admettra que Y - zF/k! = e*, pour tout z € C).
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2. En déduire la loi de la somme de n variables aléatoires indépendantes de lois de
Poisson de parametres respectifs Ay, ..., A, > 0, oun > 1 est un entier quelconque.

Exercice 144

Dans cet exercice, on cherche a calculer la fonction caractéristique d’une variable
aléatoire gaussienne.
1. Soit X une variable aléatoire réelle gaussienne centrée réduite et soit ® sa fonction
caractéristique.
a) Montrer, en le justifiant, que ® est dérivable sur R et qu’elle satisfait, pour
tout t € R, ®'(t) = —tP(¢).
b) En déduire I'expression de ®(t), pour tout ¢ € R.

2. On suppose cette fois-ci que X ~ N (p,0?), ot u € R et a2 > 0.
a) Rappeler la loi de % (on ne demande pas de redémontrer ce résultat).

b) En déduire une expression de la fonction caractéristique de X.

Exercice 145

Soit X un vecteur aléatoire réel de taille d > 1.

1. La loi de X est-elle entierement déterminée par la donnée de la loi de chacune de
ses coordonnées ?

2. Montrer que la loi de X est entierement déterminée par la donnée de la loi de
chaque combinaison linéaire de ses coordonnées.
Exercice 146

Montrer que la loi d'un vecteur aléatoire réel X est symétrique (i.e., X et —X ont la
méme loi) si et seulement si toutes les valeurs prises par sa fonction caractéristique sont
réelles.

Exercice 147

Montrer que la fonction caractéristique d’un vecteur aléatoire réel est toujours con-
tinue.

Exercice 148

Soit X une variable aléatoire réelle, de fonction caractéristique ®. Supposons qu’il
existe t € IR* tel que |®(¢)] = 1. Montrer que X est nécessairement discrete et que ses
atomes sont inclus dans une progression arithmétique de raison 27/t (on pourra utiliser

le résultat de 'exericce .

Exercice 149
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Soit X un vecteur aléatoire réel, de fonction caractéristique . On veut montrer que
si pour tout ¢t € R, |®(t)] = 1, alors X est nécessairement constant presque strement
(ie., 3c € R4 X = ¢ p.s.). On va procéder de deux manieres différentes.

1. Premiere méthode :

a) Soit Y une variable aléatoire de méme loi que X, mais indépendante de X.
Calculer la fonction caractéristique de X — Y.

b) En déduire que X =Y presque surement.

¢) On souhaite en déduire que X est constante presque surement. Démontrer
qu’il est nécessaire et suffisant de prouver que chaque coordonnée de X est
constante presque strement. Ainsi, dans toute la suite, on fixe j € {1,...,d}
et on va démontrer que X; est constante presque stirement.

d) Vérifier que X et Y; (les j-emes coordonnées de X et Y') sont i.i.d et vérifient
X; =Y presque sturement.

e) Dans cette question uniquement, supposons que X; admette un moment d’ordre
2.

i — Vérifier que Var(X;) = sE[(X; — Y;)?].

ii — Conclure.

f) On ne suppose plus I'existence d’'un moment d’ordre 2. Soit Fj la fonction de
répartition de X; et supposons, par I'absurde, l'existence d'un réel ¢ tel que
0< Fj(t) <1

i — Vérifier que P(X; <t) >0et P(X; >1t) > 0.

ii — Calculer P(X; <t,Y; >1).

iii — Conclure.
2. Seconde méthode.

a) Soit u € IR? un vecteur non nul fixé.

i— A laide de l'exercice [148] montrer que pour tout ¢ > 0, la variable
aléatoire tu' X est discrete et que ses atomes sont inclus dans une suite
arithmétique de raison 27 /t.

ii — En déduire que nécessairement, v' X est constante presque stirement.

b) Conclure que X est constante presque siirement.

* Exercice 150

Soient X et Y deux variables aléatoires réelles i.i.d. On suppose que X +Y et X —Y
sont indépendantes. Le but de cet exercice est de montrer qu’alors, nécessairement, X et
Y sont gaussiennes.

1. Soit ® la fonction caractéristique de X. Montrer que pour tous s,t € IR,

B(s +£)D(s — t) = B(s)?|D(t)[2.
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. Déduire que pour tout ¢t € IR et pour tout n € IN*,

oo-o(3) o (2

et donc, que pour tout t € R, ®(t) # 0.

. On admettra le théoreme de relevement: Si f : R — C est une fonction continue
telle que pour tout t € IR, f(t) # 0, il existe une fonction continue g : R — IR
telle que pour tout ¢t € R, f(t) = |f(t)|e¥®. En déduire I'existence d'une fonction
¢ : IR — C continue telle que ¢(0) =0 et & = e?.

An_9n

4. Montrer que pour tout t € R, ¢(—t) = ¢(t).

. Démontrer que pour tous s,t € IR,
O(s+1) + o(s —t) = 2¢(s) + o(t) + ¢(—t).

. On définit la partie paire ¢, et la partie impaire ¢o de ¢ de la maniere suivante:

1

$1(t) = 5 (¢() + ¢(=1)) et o(t) =

. (8() ~ 6(~1).,

N —

pour tout t € IR.
a) Montrer que pour tout t € IR, ¢1(t) € R et ¢o(t) € iRR.
b) En utilisant la question 4 (en (s,t) et en (—s,t)), montrer que pour tout
s,t € IR,
G1(s +1) + d1(s — t) = 2¢1(s) + 261 ()
P2(s + 1) + da(s — t) = 2¢a(s)

. Pour la partie impaire ¢o:

a) Déduire que pour tout s € IR, ¢2(2s) = 2¢(s), puis que pour tout s,t € IR,
Pa(s + 1) = ¢a(s) + ¢2(1).

b) Montrer qu’il existe u € IR tel que pour tout ¢ € IR,

$2(t) = itp.

. Pour la partie paire ¢;: soit Q(s,t) = ¢1(s + 1) — p1(s) — ¢1(t), pour s,t € RR.
a) Montrer que la fonction ) est bilinéaire et symétrique.

) En déduite l'existence de A € R tel que pour tout s,t € IR, Q(s,t) = Ast.
) Montrer que ¢;(0) = 0.

) En déduire que ¢;(t) = 2¢2, pour tout ¢ € IR.

e) Montrer que nécessairement, A < 0.

b
c
d
. En déduire que X est ou bien constante, ou bien gaussienne.
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* Exercice 151 Formule d'inversion

Soit. X une variable aléatoire réelle, dont on note ® la fonction caractéristique. Fixons
a,b e R avec a < b.

1. Soit h : R — C la fonction définie par h(t) = %@(wﬁ) sit € R\ {0} et
h(0) = b — a sinon. Vérifier que h est continue sur RR.
2. Soit H : R — C la fonction définie par H(t) = -~ fft h(u) du, pour t € R.

27
a) Montrer que pour tout t € R, H(t) = E[J;(X)] ou J; : R — IR est définie par

1 t(x—a) _:
Ji(x) = _/ sin(u) du

T Jt(z—b) u

pour tout t € IR.
b) Vérifier que pour tout = € IR,

lsia<x<b

Ji(x) — s size{ab}

0 sinon

A
on pourra utiliser le fait que Jim / sin(u)/udu =m/2).
— 00 0
c¢) En déduire que H(t) - Pla< X <b)+ w.
—00
3. Déduire de la question précédente une preuve du fait que la fonction caractéristique
d’une variable aléatoire réelle caractérise sa loi, i.e., si deux variables aléatoires
réelles ont la méme fonction caractéristique, alors elles sont identiquement dis-
tribuées.

4. Supposons que [ |®(t)]dt < co.
a) Vérifier qu’alors, pour tous a,b € IR avec a < b, Pla < X <b) <b—a (on
pourra montrer que pour tout t € R, |(e" — =) /(it)] < b —a).
b) En déduire que la loi de X est absolument continue par rapport a la mesure
de Lebesgue.
c¢) Conclure que X admet une densité par rapport a la mesure de Lebesgue, et
que celle-ci est donnée par f: ¢t € R 5= [7 e "®(u) du.
5. En s’inspirant des questions précédentes, montrer que pour tout a € IR,
I
e ""P(u)du —— P(X = a).

% —t t—o00
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5 Espérances conditionnelles

5.1 Calcul d’espérances conditionnelles

Exercice 152

Soit = {1,2,3,4,5,6} muni de sa tribu discrete A = P(Q) et de la probabilité
uniforme P = U(Q2). Soit X la variable aléatoire réelle définie par X(w) = w, pour
tout w € Q. Soit B la sous-tribu de A codant I'information de la parité de X, i.e.,
B=1{0,{1,3,5},{2,4,6},0).

1. Montrer que si Y : 2 — IR est une variable aléatoire réelle B-mesurable, alors elle

est constante sur {1,3,5} et sur {2,4,6}.

2. Déterminer E[X|B].

Exercice 153

Soit X une variable aléatoire réelle définie sur un espace de probabilité (2, A, P) et
soit A € A. Soit B la sous-tribu de A engendrée par A. On suppose que X admet un
moment d’ordre 1.

1. Montrer que pour toute variable aléatoire Y : 2 — IR mesurable par rapport a B,
il existe A\, € IR tels que Y = A4 + pd 4e.

2. En déduire une expression de E[X|B] (on pourra distinguer les cas ou P(A) = 0
ou 1).
3. Vérifier qu’on a bien E[E[X|B]] = E[X].

Exercice 154

Soit X une variable aléatoire réelle définie sur un espace de probabilité (2, A, P) et
intégrable. Soient Ay, ..., A, des éléments de A, deux a deux disjoints, tels que A;U. ..U
A, = (n>1). Soit B la sous-tribu de A engendrée par Aq,..., A,.

1. Montrer que tout élément de B s’écrit sous la forme U A;, pour un certain sous-

iel
esnemble (éventuellement vide) I de {1,...,n}.

2. En déduire que toute variable aléatoire réelle B-mesurable sécrit sous la forme

D Aila, ot AL A, €R.
i=1
3. En déduire une expression de E[X|B].

Exercice 155
Soit (€2,.A, P) un espace de probabilité et A, B € A. Déterminer E[1 4|1 5].
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Exercice 156

Soit X une variable aléatoire réelle intégrable et symétrique (i.e., X et —X ont la
méme loi). Calculer E[X||X]].

Exercice 157

Soient Xi,..., X, des variables aléatoires réelles intégrables et i.i.d, ou n € IN*.
1. Montrer que pour tout ¢ = 1,...,n, E[X;|X; + ...+ X,,] = E[X3|X; + ... + X,,].
2. En déduire E[X;|X; + ... + X,].

Exercice 158

Soit (X,,)n>1 une suite de variables aléatoires i.i.d admettant un moment d’ordre 1,
noté u, et N une variable aléatoire a valeurs dans IN*, admettant un moment d’ordre 1,

et indépendante de (X,,),>1. Déterminer espérance conditionnelle de -~ | X; sachant
N.

Exercice 159 Martingales

Soit (M,,),>1 une suite de variables aléatoires réelles intégrables. On dit que la suite
(Mn)n21 est

e une martingale si et seulement si pour tout n > 1,

E[M,1|M,| = M, ps.

e une sous-martingale si et seulement si pour tout n > 1,

E[Mn+1’Mn] > Mn p-s.

e une sur-martingale si et seulement si pour tout n > 1,

E[Mn+1’Mn] < Mn p-s.

1. Si (M,),>1 est une martingale (resp. sous-martingale, sur-martingale), montrer
que la suite (E[M,]),>1 est constante (resp. croissante, décroissante).

2. Si(M,),>1 est une martingale est f est une fonction convexe strictement monotone
telle que pour tout n > 1, f(M,) est intégrable, montrer que (f(M,))n>1 est une
sous-martingale.

3. Soit X une variable aléatoire réelle intégrable sur un espace de probabilité (£2, A, P)
et soit (A,),>1 une suite croissante de sous-tribus de A. Montrer que la suite
(E[X|A;])n>1 est une martingale.
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4. Soit (X,)n,>1 une suite de variables aléatoires i.i.d de loi pdgy + (1 — p)dg_13, onr
p € [0,1]. Pour tout n > 1, on pose S, = Xj + ...+ X,,. Suivant la valeur de p,
établir si (S,),>1 est une martingale, une sous-martingale ou une sur-martingale.

* Exercice 160 Lemme de Doob-Dynkin

Soit X une variable aléatoire définie sur un espace de probabilité (22, A, P), a valeurs
dans un espace mesurable (£, &) quelconque. Soit B la tribu engendrée par X et soit
Y une variable aléatoire B-mesurable, a valeurs dans un espace mesurable (F,F). On
cherche a montrer que Y s’écrit nécessairement comme une fonction mesurable de X.

1. Supposons Y de la forme 1 4, pour un certain A € A.
a) Vérifier que nécessairement, A = X ~!(B) pour un certain B € &.
b) En déduire une fonction mesurable h : E — F telle que Y = h(X).

2. Vérifier que le résultat reste vrai si Y est étagée.

3. Supposons a présent que Y est une variable aléatoire quelconque.
a) Montrer que sans perte de généralité, on peut supposer que Y est positive, ce
qu’on fait dans les questions suivantes.
b) Conclure en approchant Y par une suite croissante de variables aléatoires
étagées.

Exercice 161

Soient X et Y deux variables aléatoires i.i.d de loi uniforme sur [0, 1]. Déterminer
(apres s’étre assuré de leur existence) E[X /(X +Y)|Y] et Emax(X,Y)|X].

Exercice 162

Soient X et Y deux variables aléatoires réelles indépendantes. On suppose que X suit
la loi exponentielle de parametre A > 0 et que Y > 0 presque strement. Déterminer
Ele=*Y|Y].

Exercice 163 Théoreme de transfert conditionnel, cas non indépendant, a densité

1. Soient X et Y deux variables aléatoires définies sur un espace de probabilité
(Q, A, P), a valeurs dans des espaces mesurables (E, &) et (F,F), respectivement.
Soient y et v deux mesures sur (F, ) et (F,F), respectivement. On suppose que
la loi jointe de X et Y admet une densité, qu’on notera f(x,y), par rapport a la
mesure produit 4 ® v. Soit h : E x F' — IR une fonction mesurable telle que
hX,Y) e LY (9, A, P). Montrer que E[A(X,Y)|X] = ¢(X) p.s.,ou¢: E — R est

la fonction définie par

o) = {JFW,M;—;S;” dv(y) si fx(x) #0.

9

mlog(2) sinon
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ou fx est la densité de X par rapport a p.
2. Application : soient XY deux variables aléatoires i.i.d de loi uniforme sur [0, 1]
et U=min(X,Y) et V =max(X,Y). On cherche a déterminer E[X|V].
a) Montrer que la loi jointe de U et V' admet une densité par rapport a la mesure
de Lebesgue, qu’on déterminera.
b) Justifier le fait que E[X|V] = E[Y|V].
c) Vérifier que E[X +Y|V] = E[U + V|V].
d) Déduire une expression de E[X|V].

Exercice 164

Soient X et Y deux variables aléatoires réelles de carré intégrable satisfaisant E[ X |Y] =
Y et E[Y|X] = X presque surement.

1. Montrer que E[XY] = E[X?] = E[Y?].

2. En déduire que X =Y presque stirement.

3. Supposons X et Y seulement intégrables.
a) Proposer une fonction ¢ : IR — IR qui soit continue, strictement croissante et
bornée.
b) Vérifier que la variable aléatoire (X —Y)((X) — ¢(Y)) est intégrable et pos-
itive.
¢) Montrer que E[(X —Y)(¢(X) — ¢(Y))] = 0.
d) Conclure que X =Y presque strement.

* Exercice 165

Soit X un vecteur aléatoire réel intégrable sur un espace de probabilité (2, A, P) et
soit B une sous-tribu de .A. Montrer que X a la méme loi que E[X|B] si et seulement si
elle est B-mesurable (auquel cas, X = E[X|B]).

Exercice 166 Identité de la variance

Soit X une variable aléatoire réelle de carré intégrable définie sur un espace de prob-
abilité (2, A, P). Soit B une sous-tribu de A. On définit la variance conditionnelle de X
sachant B comme

Var(X|B) = E[X?|B] — E[X|B]*.

Vérifier l'identité suivante:

Var(X) = Var (E[X|B]) + E [Var(X|B)] .
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5.2 Version conditionnelle d’inégalités classiques

Exercice 167 Inégalité de Cauchy-Schwarz conditionnelle

Soient X et Y deux variables aléatoires réelles définies sur un espace de probabilité
(Q, A, P) et soit B une sous-tribu de A. On suppose X et Y de carré intégrable. Montrer
I'inégalité suivante:

E[XY|B]* < E[X?BE[Y?|B] p.s.

Exercice 168 Inégalité de Jensen conditionnelle

Soit X un vecteur aléatoire réel défini sur un espace de probabilité (2,4, P), a valeurs
dans R? (d > 1) et soit B une sous-tribu de A. Soit f : IR — IR une fonction convexe
différentiable. On suppose que X et f(X) sont intégrables. Montrer que

F(E[X|B]) < E[f(X)[B] p-s.

Qu’en est-il du cas ou f n’est pas différentiable 7 On pourra utiliser le fait que pour tout
e R, f(x) =suppepa z+b, 00 H={(a,b) e R*xR: f(y) > a"y+b,Vy € R}.)
* Exercice 169 Inégalité de Holder conditionnelle

Soient X et Y deux variables aléatoires réelles définies sur un espace de probabilité
(2, A, P) et soit B une sous-tribu de A.

1. Soient p,q > 1 deux réels satisfaisant 1/p + 1/¢ = 1. On suppose que X €
LP(Q, A, P) et que Y € L1(Q2, A, P). Montrer que

E[IXY|B] < B[|IX["|B]'?E[]Y|"|B]"* p.s.

2. En déduire que si X € LP(Q2, A, P) pour un certain p > 1, alors E[X|B] €
LP(Q, B, P).

6 Lois conditionnelles

Exercice 170

Dans chacun des cas suivants, calculer la loi conditionnelle de Y sachant X = x :

1. Y =XZ, ou X et Z sont des variables aléatoires réelles indépendantes, Z suit la
loi exponentielle de parametre 1 et z > 0.

2. Y=X+7 ou X et Z sont des variables aléatoires réelles indépendantes, Z suit
la loi normale centrée réduite et x € RR.
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3. Y =XZ7Z ou X et Z sont des variables aléatoires réelles indépendantes, Z suit la
loi normale centrée réduite et x € IR.

4. Y = X(Z+ X), ou X et Z sont des variables aléatoires réelles indépendantes, Z
suit la loi normale centrée réduite et x € IR.

5. Y = XZ, ou X et Z sont des variables aléatoires réelles indépendantes, Z suit la
loi uniforme sur [1,2] et = € R.

Exercice 171

Soit (X, )n>1 une suite de variables aléatoires i.i.d normales centrées réduites, et N
une variable aléatoire a valeurs dans IN, indépendante de (X,,),>1. On pose S = Ef\il X;.

1. Déterminer la loi conditionnelle de S sachant N = n, pour tout n € IN.

2. Si N suit une loi de Poisson de parametre A > 0, en déduire ’espérance de S.

Exercice 172

Soient X et Y deux variables aléatoires réelles i.i.d de loi exponentielle de parametre
1etsoit S=X+Y.

1. Déterminer la loi conditionnelle de X sachant S = s, pour tout s > 0.
2. En déduire la loi conditionnelle de X/S sachant S = s, pour tout s > 0.

3. Les variables aléatoires X/S et S sont-elles indépendantes 7

Exercice 173 Moments conditionnels

Soit (2, A, P) un espace de probabilité et X et Y deux variables aléatoires sur (€2, ,P).
On suppose que X est a valeurs dans un espace mesurable quelconque (E, &) et que Y
est réelle. On suppose aussi que Y € LP(Q, A, P), ou p € IN*.

1. Pour tout £ =1,...,p, on définit la fonction
mi: F— 1R

.T'—)/ykdpyp(:z(y)
R

Pour tout x € E, my(x) est appelé “k-eme moment conditionnel de Y sachant
X = z”. Montrer que my(x),...,m,(z) sont bien définis pour Pyx-presque tout
rekb.

2. Vérifier que pour tout k=1,...,p,

E[Y*|X] = my(X).
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3. Dans la suite, on suppose que p > 2. Pour tout x € E, on appelle “variance
conditionnelle de Y sachant X = x” la variance d’une variable aléatoire réelle de
loi Py|x—;. On note v(x) cette quantité. Vérifier que pour tout x € E, v(x) est
bien définie et que

v(x) = my(z) — my ()2
Dans la suite, on note Var(Y|X) la variable aléatoire v(X).

4. Montrer qu’on a I'égalité suivante:

Var(Y') = E[Var(Y|X)] + Var(E[Y|X]).

Exercice 174

Soient X et Y deux variables aléatoires réelles indépendantes, telles que Y est intégrable.
Retrouver 'égalité E[Y|X] = E[Y] en utilisant le théoreme de transfert conditionnel.

Exercice 175

Dans les cas suivants, déterminer ’espérance conditionnelle de X; sachant X; + X5:

1. X et X5 sont deux variables aléatoires réelles indépendantes de lois binomiales de
parametres respectifs (nq,p) et (ng,p), ou p €]0, 1] et ny,ny € IN*.

2. X; et Xy deux variables aléatoires réelles indépendantes de lois de Poisson de
parametres respectifs Ay et Ay, ot Ay, Ay > 0.

3. X et X5 deux variables aléatoires réelles indépendantes de lois exponentielles de
parametres respectifs A\; et Ay, ot A, Ay > 0.
Exercice 176

Soit f la fonction de deux variables réelles définie par:
f(xa y) = Cme—x($+y)/21x7y207 V(l’, y) € IRQa

ol C' est un nombre positif donné. En effectuant le moins de calculs possible, déterminer

E[Y]X].

Exercice 177
Soient X et Y deux variables aléatoires a valeurs dans des espaces mesurables (F, )
et (F,F) respectivement, et soit h : £ x F' — IR une fonction mesurable.

1. Soit f : F — IR une fonction mesurable. Démontrer que pour tout x € FE,
[#Py|x=, est une loi conditionnelle de f(Y') sachant X = x.

2. Démontrer que pour tout x € E, Py y)x=- est une loi conditionnelle de h(X,Y")
sachant X = x.
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3. En déduire que si X et Y sont indépendantes, alors pour tout x € E, P, y) est
une loi conditionnelle de Y sachant X = .

4. En déduire que si X et Y sont indépendantes et h(X,Y") est intégrable, alors
E[R(X, Y)[X] = o(X),

ou ¢ : E — IR est la fonction mesurable donnée par ¢(z) = E[h(z,Y)], pour tout
re L.

Exercice 178

Soient X et Y deux variables aléatoires réelles, dont la loi jointe est supposée continue,
de densité donnée par

f(xa y) = Ce—yILOSLL’SZﬁ V(I’, y) € IR27

ol C' est un nombre positif donné.

1. Déterminer la valeur de C.

N

Déterminer la loi conditionnelle de X sachant Y.
En déduire la loi conditionnelle de X/Y sachant Y.

Qu’en déduit-on sur les variables aléatoires X/Y et Y 7

anli

7 Convergence de suites de variables aléatoires

Dans cette partie, toutes les variables aléatoires sont définies sur un espace de probabilité

(Q, A, P).

7.1 Modes de convergence

On rappelle le théoreme de Borel-Cantelli. Soit (A,),>1 une suite d’événement dans A.
Alors:

e Si ZP(A,L) < 00, alors P(limsup A,) =0 ;
n=1

n—oo

o
e Si, de plus, les événements A;, As, ... sont indépendants, alors si Z P(A,) = oo,
n=1

alors P(limsup A4,) = 1.

n—0o0

(On rappelle que limsup A, = ﬂ U A,.)

n—00
n=1p=n
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Exercice 179

Soit (X, )n>1 une suite de variables aléatoires réelles. Montrer que les ensembles suiv-
ants sont des événements :

. {we Q: X, (w) — 0}
2. {lweQ:X,(w) — oo}
3. {we:(X,(w)) converge}

Exercice 180

Soit (X,)n>1 une suite de vecteurs aléatoires réels dans R? et X un vecteur aléatoire
réel donné. Montrer que les propositions suivantes sont équivalentes :

(i) X, —— X

n—oo

(i) Ve > 0, P(|| X,, — X|| > e) —— 0

n— o0
(iii) Ve > 0,3ng € IN,Vn > ng, P(||X,, — X|| >¢) <e
(iii) Ve > 0,3ng € IN,Vn > ng, P(|| X, — X|| > ¢) <¢

Exercice 181

Soit (X,,)n>1 une suite de vecteurs aléatoires réels.

X,— X
1. Montrer que X, P 4 X si et seulement si | | I

2. Plus généralement, montrer que si f : Rt — IR est n’importe quelle fonction
strictement croissante, majorée, continue en zéro, avec f(0) = 0, alors X, RSN '¢
n—oo
si et seulement si E[f (]| X, — X||)] —— 0.
n—oo

Indice : on rappelle que pour toute variable aléatoire positive Z,

E[Z] = /OOO P(Z > t)dt

Exercice 182

Soit (Z,)n>1 une suite de variables aléatoires i.i.d de loi exponentielle de parametre
A > 0. Pour tout n > 1, on pose X,, = min(Z, ..., Z,). Montrer que X,, == 0.

n—o0

Exercice 183
Pour tout entier n > 1, soit X,, une variable aléatoire de loi (1 —1/1)d¢1/ny + 1/nd5ny-
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1.
2.

Démontrer que X,, converge en probabilité vers zéro.

Supposons que Xi, Xo,... sont indépendantes. La suite (X,,),>1 converge-t-elle
presque strement ?

Exercice 184

Pour tout entier n > 1, soit X,, une variable aléatoire de loi de Poisson de parametre
1/n. Montrer que

(n)"" X,, —2— 0.

n—o0

* Exercice 185

Soit (M, d) un espace métrique et (z,),>1 une suite d’éléments de M, convergeant vers
un élément x € M. Pour chaque n > 1, on définit une variable aléatoire X,, a valeurs dans
M (muni de sa tribu borélienne), de loi uniforme dans I’ensemble {:Utnm T2 415 - - , T}

Montrer que X,, —— .

n—oo

Exercice 186

1.

Soient X7, X5, ... des variables aléatoires réelles i.i.d. On suppose que X; admet
un moment d’ordre 2. Montrer que la moyenne empirique de Xi,...,X,, tend en
probabilité vers [E[X;], lorsque n — 0.

En déduire que si, pour tout n > 1, Y,, est une variable binomiale de parametres n
et p € [0, 1], alors Y,,/n converge en probabilité, lorsque n — oo, vers une variable
aléatoire que I'on déterminera.

Soient Xy, X, ... des variables aléatoires réelles i.i.d. Pour tout n > 1, on note
Y, le nombre d’indices i € {1,2,...,n} tels que Xy, < Xg;41. La suite Y, /n
converge-t-elle en probabilité ?

Exercice 187

Soit (X,,)n>1 une suite de vecteurs aléatoires réels et X un vecteur aléatoire réel.

1.

o0
Montrer que si, pour tout € > 0, ZP(HXn — X|| > ¢€) < o0, alors X,, converge

n=1
presque stirement vers X.

o0

Montrer que sl existe p > 1 tel que Z]E[HXn — X||”] < oo, alors X,, converge
n=1

presque strement vers X.

Exercice 188

Soit (X,,)n>1 une suite de variables aléatoires réelles de méme loi.
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1. Montrer que X,,/n converge en probabilité vers zéro.

2. Supposons, dans cette question, que Xy, Xs, ... sont indépendantes (donci.i.d). On
souhaite montrer que X, /n converge presque sirement vers zéro si et seulement si
X est intégrable.

a) Montrer que X est intégrable si et seulement si pour tout € > 0, I'intégrale

/ P(]X1| > et)dt est bien définie.
0
b) En déduire que X7 est intégrable si et seulement si pour tout € > 0, la somme
(o.9] Xn
Sor ([
n
n=1

c¢) Conclure (on pourra utiliser les résultats de 1'exercice [187)).

> 5) est finie.

Exercice 189

1. Soit (X,)n>1 une suite de variables aléatoires, telles que pour tout n > 1, X,, suit
la loi de Poisson de parametre 1/n.
a) Montrer que X,, converge en probabilité vers zéro, lorsque n — oc.

b) Montrer que (n!)enn'Xn converge en probabilité vers zéro.

c) Si X1, Xo, ... sont indépendantes, la suite X,, converge-t-elle presque sturement
vers zéro 7!
d) Soient Z1, Zs, . .. des variables aléatoires réelles indépendantes, telles que pour

tout n > 1, Z, suit la loi de Poisson de parametre n=! — (n +1)7%
i — Montrer qu’avec probabilité 1, la série de terme général Z,, converge.
On peut alors définir, sans ambiguité avec probabilité 1, les variables

(o)
aléatoires X,, = Z Z, pour tout n > 1.
k=n
ii — Montrer que pour tout n > 1, X, suit la loi de Poisson de parametre

1/n. On pourra calculer sa fonction caractéristique a 1’aide du théoreme
de convergence dominée.
iii — Montrer que X,, converge presque surement vers 0.

2. Pour tout n > 1, soit X,, une variable aléatoire exponentielle de parametre n. X,
converge-t-elle presque siirement, lorsque n — oo 7

3. Montrer que le minimum de n variables aléatoires i.i.d de loi uniforme sur [0, 1]
converge presque surement vers zéro, lorsque n — oo (ceci n'est pas la méme
question que lexercice [184]1).

* Exercice 190

Soit (X, )n,>1 une suite de vecteurs aléatoires réels de taille d > 1. On cherche a
montrer que (X, ),>; converge en probabilité si et seulement si toute sous-suite admet
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une sous-suite qui converge en presque stirement, et que la limite est nécessairement la
méme.

1. Supposons que X,, converge en probabilité, vers un vecteur aléatoire qu’on note
X.

a) Pour tout entier p > 1, montrer I'existence d'un entier n(p) tel que P(||Xp) —
X|| >1/p) <27P.

b) Montrer qu’on peut supposer que n(l) <n(2) <....

¢) Montrer que pour tout € > 0,

S P(IXuy — X[ > €) < ox.

p>1

d) En déduire le sens direct de I’équivalence qu’on souhaite montrer.
2. Supposons que toute sous-suite de (X, ),>1 admet une sous-suite qui converge
presque strement.

a) Démontrer que la limite presque stre ne dépend pas du choix de la sous-suite.
On notera X cette limite.

b) Supposons par 'absurde que X,, ne converge pas en probabilité vers X. Mon-
trer 'existence de deux réels o,e > 0 et d’une sous-suite (Xy(n))n>1 tels que
P(| Xy~ X[ > &) > a.

c¢) Conclure.

* Exercice 191 Conséquences de la loi du zéro/un de Kolmogorov

Soit (X,)n>1 une suite de variables aléatoires réelles indépendantes. Pour tout n > 1,
on note A, la tribu engendrée par X,,.

1. Les événements suivants sont-ils dans la tribu asymptotique A, (définie dans
'exercice B1] 7
a) {w e Q: (X, (w))n>1 converge}
b) {w € Q: X, (w) > X;(w) pour une infinité de valeurs de n}
¢) {w € Q: (X, (w))n>1 est constante a partir d’'un certain rang}
d) {weQ:> ", Xi(w) > 0 pour une infinité de valeurs de n}

)

; >

) {we: (ZZ X;(w))n>1 converge}
) 0

)

)

@

=1
f) {w e Q: X,(w) # 0 pour une infinité de valeurs de n}
{w e Q: (X, (w))n>1 admet 0 comme valeur d’adhérence}
h) {X,(w) = a1, X1 (w) = ag, ..., Xpip(w) = ap}, ot ay,...,a, € IR sont des
nombres réels fixés, et p > 1 est un entier donné.
2. Supposons que la suite (X,),>; converge presque sirement, vers une variable

aléatoire réelle X. Montrer que X est A, -mesurable, et qu’elle est donc presque
stirement constante.
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* Exercice 192 Convergence en probabilité dans un espace métrique

Soit (M,d) un espace métrique, et soit (X,,),>1 une suite de variables aléatoires sur

M (muni de sa tribu borélienne). On suppose que X,, converge en probabilité vers une

variable aléatoire X, i.e., pour tout ¢ > 0, P(d(X,,X) > ¢) —— 0. Soit (N,p) un
n—oo

second espace métrique et soit ¢ : M — N une application continue. On cherche a

montrer que g(X,) converge alors en probabilité vers g(X). On fixe ¢ > 0 quelconque, et

on souhaite donc montrer que P(p(g(X,),g(X)) > ¢e) —— 0. Pour tout 6 > 0, on pose
n—roo

Bs ={x € M :3y € M, d(z,y) > 6,p(9(x),9(y)) < e}
1. Vérifier que ﬂ Bs = 0.

>0
2. En déduire (soigneusement !) que (lsir% P(X € Bs) =0.
—

3. Montrer que pour tout 6 > 0 et pour tout n > 1,

P(p(g(X,), 9(X)) > &) < P(d(X,, X) > 8) + P(X € By).

4. Conclure.

7.2 Lois des grands nombres

Exercice 193 Lemme de Cesaro

Soit (uy,),>1 une suite de nombres réels. On suppose que u, —— ¢ € IR. Montrer
- n—o00

que % > u; — L. A laide d'un contre-exemple, montrer que la réciproque n’est pas
n—oo

toujours vraie.

Exercice 194 Lemme de Kronecker

Soient (u,),>1 une suite de nombres réels et (w,),>1 une suite croissante de réels telle

que w, — oo. Montrer que si la série de terme général u,, converge, alors
n—oo

=1

Exercice 195 Une loi faible des grands nombres

Soit (X,)n>1 une suite de variables aléatoires réelles indépendantes admettant un

E[X:]+..+E[X,
n

moment d’ordre 2. Pour tout n > 1, on pose m,, = L. On suppose que pour

tout n > 1, Var(X,,) < 02, ot 6% > 0 est un nombre fixé.
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. , P
1. Supposons que m,, tend vers un certain nombre réel m. Montrer qu’alors, X,, ——
n—oo

m (on pourra utiliser l'inégalité de Bienaymé Chebychev).

2. Supposons que E[X,,] tend vers un certain réel m. Montrer qu’alors, m,, —— m
n—oo

et que X, L> m.

n—o0

3. Montrer qu’on a toujours X,, — m,, P

n—o0

Exercice 196 Une autre loi faible des grands nombres

Soit (X, )n>1 une suite de variables aléatoires réelles de carré intégrable. On suppose
que pour tout ¢,7 > 1 avec ¢ # j, cov(X;, X;) = 0, et que #Z?:l Var(X;) —— 0.
n—oo
Montrer qu’alors,

%i(xi — E[X;])) —— 0.

n—oo

Exercice 197 Encore une loi faible des grands nombres

Soit (X,)n>1 une suite de variables aléatoires réelles i.i.d et intégrables. On cherche a
montrer que

X, —— E[X4].

n—oo
Pour chaque n > 1, on pose Y; = X; — E[X}].
1. Montrer qu’il suffit de prouver que Y, LN}
n—oo
2. Pour chaque n > 1, on pose Z, = Y, 1}y, |<n-
a) Montrer que £ 3"  E[Z;] — 0.
n—oo
b) Fixons n > 1.
i — Montrer que pour tout i =1,...,n, Var(Z;) < E[X71)x,<n).
ii — Montrer que E[X71 x, < /z] < vnE[|X1]].
iii — Montrer que E[XT1 e ix,<n) < nE[|X1|1x,> va)-
c¢) En déduire que

n

1
i=1

d) A l'aide de I'exercice précédent, conclure que Z, P o
n—o0

3. Il ne reste plus qu’a montrer que Y, — Z, LN}

n—00
a) Montrer qu’avec probabilité 1, Y,, = Z, pour tout n assez grand (on pourra

utiliser le résultat de l'ezercice précédent).
b) En déduire que Y,, — Z, 22 .0.

n—o0
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c¢) Conclure.

Remarque. Dans lezercice plus bas, on montrera qu’on a en fait la convergence
presque sure de X,, vers E[X1], sous Uhypothése que les X,, sont i.i.d.

Exercice 198 Le cas de la loi de Cauchy

Soit (X, ),>1 une suite de variables aléatoires réelles i.i.d de loi de Cauchy. On rappelle
que la loi de Cauchy est la loi absolument continue par rapport a la mesure de Lebesgue,
de densité donnée par f(z) = m, x € IR. On admet que la fonction caractéristique
de cette loi est donnée par ®(t) = e t € R.

1. Montrer que pour tout n > 1, X,, suit la loi de Cauchy.

2. En déduire qu'il n’existe pas de nombre réel ¢ tel que X, LN
n—oo

Exercice 199 Inégalité de Kolmogorov
Soient X7i,..., X, (n > 1) des variables aléatoires réelles indépendantes, centrées (i.e,
d’espérance nulle) admettant un moment d’ordre 2. Pour tout & = 1,...,n, on note

Sk = Zle X, et on cherche a montrer 'inégalité suivante, pour tout € > 0 :

1>
< — V .
P (fg]?i{rl‘sk’ > 8) ) ‘_El ar(Xl).

On note E I'événement {maxj<i<n |Sk| > €} et pour k =1,...,n, on définit I'événement
Er ={|Sk| >¢,[Si| <e,Vi=1,...,k— 1} (E; estsimplement I’événement {|S;| > €}).
1. Vérifier que P(E) = P(Ey) + ...+ P(E,).
2. Vérifier que pour tout k =1,...,n, P(E}) < 5E[1g,S].
3. Fixons k € {1,...,n}. On va montrer que E[lg, S7] < E[1g, S2].
a) Vérifier que

E[lg, S2] = B[lg, E[(Sk + Xgs1 + ..+ X)) |(X1, -, X))

b) A l'aide du théoreme de transfert conditionnel, en déduire 'inégalité recherchée.

4. Déduire des questions précédentes que P(E) < % Var(S,) et conclure.

Exercice 200 Séries de variables aléatoires

Soit (X, )n,>1 une suite de variables aléatoires réelles indépendantes admettant un mo-
ment d’ordre 2, et satisfaisant E[X,,] = 0 pour tout n > 1. Supposons que >~ Var(X;) <
0o. On souhaite montrer qu’alors, la série de terme général X,, converge presque strement,
ie., S, =Y ., X; converge presque sirement, lorsque n — oo. Pour chaque n > 1, on
pose A, = supy>; [Snyr — Sn| et A =inf,>; A,
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1. Montrer qu’il est nécessaire et suffisant de vérifier que A = 0 p.s.
2. Vérifier que A = 0 p.s si et seulement si pour tout € > 0, P(¥n > 1, A, >¢) = 0.

3. Soit € > 0. Fixons n > 1.
a) Montrer que

P(A, >¢) = lim P(max |Shtr — Sn| > €).

7—00 1<k

b) En utilisant le résultat démontré dans 'exercice précédent, en déduire que

1 o0
P(A, >e) < 5 > Var(Xy).
k=n+1

4. En déduire que P(Vn > 1, A, > ¢) = 0 et conclure.

Exercice 201 Une loi forte des grands nombres

Soit (X, )n>1 une suite de variables aléatoires réelles indépendantes et de carré intégrable.

Var (X,
On suppose que E[X,] —— m € R et Z—) < 00
n—oo
n=1
1. Pour tout n > 1, soit Y,, = %M. Vérifier que la série de terme général Var(Y},)
converge.

, . Y p.s .- . , s . .
2. En déduire que que X, —> m (on pourra utiliser l’exercice précédent ainsi que
les lemmes de Cesaro et de Kronecker démontrés dans les exercices u) et |193] .

* Exercice 202 Une preuve alternative de la loi forte des grands nombres pour des
variables i.i.d de carré intégrable

Soit (Xn)n>1 une suite de variables aléatoires réelles i.i.d de carré intégrable. Pour
tout n > 1, on note X,, la moyenne empirique de Xi,..., X,,. On cherche & montrer que
X, 25 ElX).

n—0o0

1. Pour tout n > 1, on note Y,, = X,, — E[X;]. Montrer qu'il est nécessaire et suffisant
de montrer que Y, 22 0. Dans toute la suite, on note S, = >, Y, pour tout

n—o0

entier n > 1, de sorte que Y, = Sy/n.
2. Vérifier que pour tout & > 0, la série de terme général P(|Y,2| > €) est convergente.

3. En déduire que Y,z =2 0 (on pourra utiliser les résultats de I'exercice |187)).
n—oo

4. Pour tout n > 1, montrer 'existence d'un unique entier k,, > 1 tel que k;,% <n<
(kn, + 1)
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5. Vérifier que pour tout n > 1,

Y, = max;_— 1S =89
Vol < (Vi | + D0ttt 155 = Sig|

ka

max;—g2 .. (k+1)2—1 ‘Sj - Sk2| p.s.
]{52 k—o0

max;—g2 .. (k+1)2-1 |S - Sk:2|
J (k+1) J >e),

> 0.

6. En déduire qu’il est suffisant de montrer que

7. Soit € > 0. Montrer que la série de terme général P 12

k > 1, est convergente (on pourra commencer par utiliser une borne d’union, puis
I'inégalité de Bienaymé-Chebychev).

8. Conclure.

Exercice 203 Encore une loi forte des grands nombres (Kolmogorov-Khintchine)

Soit (X,)n>1 une suite de variables aléatoires réelles i.i.d intégrables. On souhaite
montrer qu’alors, X, —— E[X}].
n—oo

1. Vérifier que sans perte de généralité, on peut supposer (ce qu’on fera dans la suite)
que E[X;] =0.
2. Pour tout n > 1, on pose Y, = X, 1|x,|<n-
a) Vérifier qu’avec probabilité 1, Y,, = X, pour tout n assez grand.
b) En déduire qu’il est suffisant de montrer que Y, —=— 0.

n—oo

3. Montrer que E[Y,] — 0.

n—o0
4. Montrer que
> Var(Y,,) 1,
> i SED X
n=1 n=1

(on prendra soin de tout justifier).
5. Vérifier que pour tout n > 1, X711y 1<n = Doy Xilp1<x1|<m-
6. En déduire que

Z EX12]1|X1\§TL < | Xq| Z m,_1<1x,1<m Z 3
n=1 m=1 n=m

(encore une fois, on prendra soin de tout justifier).

7. Vérifier que pour tout m > 1,



8. Déduire des questions précédentes que

> Var(Y,,
S0 Y ) < op) )
n=1 n

9. Conclure a 'aide de I'exercice précédent.

Exercice 204 La réciproque de la loi de Kolmogorov-Khintchine

Soit (X,)n>1 une suite de variables aléatoires i.i.d. On suppose que X, converge
presque surement, vers une variable aléatoire qu’on note Z dans la suite.

- X, P Xo _ ¥ _ n-1%
1. Vérifier que == — 0 (on remarquera que =* = X, — =X, _1).

2. En déduire que X; est intégrable (cela est démontré dans l'exercice et que
Z = E[X;] preque surement.

Exercice 205

Soit (X, )n>1 une suite de variables aléatoires indépendantes. Pour tout n > 1, on
suppose que P(X, =0) =1 — m et P(X,=n)=P(X,=-n)= m.

1. Vérifier que les X,, sont intégrables et centrées.

2. Montrer que X, 50,

n—oo
3. On va montrer qu’en revanche, X,, ne converge pas presque sirement vers 0.
a) A I'aide du théoreme de Borel-Cantelli, montrer qu’avec probabilité 1, | X,,| =
n infiniment souvent.
b) En déduire que % ne converge pas presque surement vers 0.
c¢) Conclure.

Exercice 206

Soit f :[0,1] = IR une fonction continue. Calculer la limite, lorsque n — oo, de

/ s (u) ey d.
[071}71 n

Exercice 207

Soit (X,,)n>1 une suite de variables aléatoires réelles i.i.d, de carré intégrable. Pour

_ 1 <&
tout n > 1, on note X,, = — E X; la moyenne empirique de Xi,...,X,, et V,, =
n
i=1

1 < .
— 5 (X; — X,,)? leur variance empirique.
n

i=1

Etudier la convergence presque sire de X,, et V,,, lorsque n — oo.
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Exercice 208

On considere un pécheur, qui, toute sa vie, va pécher dans la méme riviere, contenant
deux especes de poissons: des carpes et des truites. Chaque jour, le pécheur reste sur sa
barque, a pécher, jusqu’a ce qu’il attrape une truite. On suppose qu’a chaque prise, il y a
autant de chances qu’il s’agisse d’une carpe que d’une truite. On note n le nombre total
de jours ou le pécheur s’en est allé pecher et, pour ¢ = 1,...,n, on note X; le nombre de
poissons attrapés par le pécheur le jour numéro i, c’est-a-dire, le nombre de poissons qu’il
lui a fallu attraper avant de pécher une truite, la truite étant incluse dans le compte.

1. Quelle est la loi de X3 7
2. A la fin de sa vie, le pécheur aura-t-il péché significativement plus de carpes, ou

de truites ?
Exercice 209

Soit (X, )n>1 une suite de variables aléatoires réelles i.i.d, de carré intégrable. Etudier
X1 Xo+ X0 X5+ ...+ X, 1 X,

n

la convergence presque stire de

* Exercice 210 Une réciproque a la loi forte des grands nombres

Soit (X, )n>1 une suite de variables aléatoires réelles i.i.d. Pour tout n > 1, soit X, la
moyenne empirique de Xq,...,X,,.

1. A l'aide de l'exercice [191] montrer que P({w € Q : X,,(w) converge}) =0 ou 1 et

que si X,, converge presque surement, sa limite est nécessairement une constante.

2. Montrer que X,, converge presque stirement si et seulement si X; admet un moment

d’ordre 1, qui est alors la limite presque stre de X,, (on pourra montrer que si X,

converge presque surement, alors X, /n converge presque surement vers 0, et utiliser
le résultat de 'exercice [188)).

Exercice 211 Régression linéaire

Soient X et Y deux variables aléatoires réelles, de carré intégrable. On suppose
Var(X) # 0.
cov(X,Y) cov(X,Y)
Var(X) Var(X)
qui minimisent la fonction (a,b) € R? — E[(Y — aX — b)?].
2. Montrer qu’on peut écrire Y = a*X + b* 4 €, ou ¢ est une variable aléatoire réelle
de carré intégrable, satisfaisant E[e] = 0 et cov(e, X') = 0.

1. Montrer que a* = et b* =E[Y] — [E[X] sont les uniques réels

3. Montrer que, réciproquement, si a et b sont deux nombres réels tels que, en posant
e=Y —(aX +b),on aE[e] =0 et cov(e, X) =0, alors a = a* et b = b*.
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4. Soit ((X,, Yn))n>1 une suite de vecteurs aléatoires i.i.d de meme loi que le vecteur

A~

(X,Y). Pour tout entier n > 1, on définit le couple (a,,b,) comme un minimiseur
de la fonction .
1
(a,b) € R? - Z(m —aX; — )%
i=1
a) Montrer qu’avec probabilité un, la suite (X,,),>1 n’est pas constante.
b) En déduire qu’avec probabilité un, le couple (a,,b,) est unique pour n assez
grand, et le calculer. R

¢) Montrer que le couple (a,, b,) converge presque strement vers (a*, b*) lorsque
n — OQ.

8 Convergence en loi et théoreme de la limite cen-
trale

8.1 Convergence en loi

Exercice 212

Soit (X,,),>1 une suite de variables aléatoires réelles, convergent en distribution vers
une variable aléatoire réelle X supposée continue. Montrer les assertions suivantes:

Pour tout t € R, P(X,, >t) —— P(X >1).
n—oo
Pour tout t € R, P(X,, <t) — P(X <1).
n—oo
Pour tous a,b € IR tels que a < b, P(a < X,, <b) —— P(a < X < b).
n—oo

Pour tous a,b € R tels que a < b, P(a < X, <b) —— P(a < X < D).
n—oo
Pour tout t € R, P(|X,| <t) —— P(|X| <1t).
n—oo

A

Exercice 213

Pour tout n > 1, soit X, une variable aléatoire réelle satisfaisant P(X,, =0) =1—1/n
et P(X,, =n?) =1/n.

1. Montrer que X, L 0.

n—oo

2. Qu’en est-il de la suite E[X,,] 7

Exercice 214

Soit (X,,),>1 une suite de variables aléatoires i.i.d de loi uniforme sur [0, 1]. Montrer
que la suite (nmin(Xy, ..., X, ))n>1 converge en loi, vers une loi limite qu’on déterminera.
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Exercice 215

Soit (X,),>1 une suite de variables aléatoires i.i.d de loi exponentielle de parametre
1. Pour tout n > 1, on note M,, = max(Xy,...,X,). Déterminer une suite réelle (a,),>1
telle que M,, — a,, converge en loi, lorsque n — oo, vers une distribution qu’on identifiera.

Exercice 216

Soient X7, Xo, ... des variables aléatoires réelles i.i.d de loi de Cauchy.
1. Vérifier que X; n’admet pas de moment d’ordre 1.
2. On admet que la fonction caractéristique de X; est donnée par ®(t) = eIl pour
tout ¢t € RR.
a) Déterminer la loi de X,,, pour tout n > 1.
b) En déduire que X,, ne converge pas en probabilité vers une constante.
¢) Soit (a,)n—eo Une suite strictement positive satisfaisant a,,/n —— oo. Mon-

n—ro0
Xi+...+X,
trer que 1 + 0.
an
Exercice 217 Loi des petits nombres

Démontrer la loi des petits nombres : si, pour tout n > 1 assez grand, X,, suit la loi
binomiale de parameétres n et A/n, ou A > 0, alors X,, converge en distribution vers la loi
de Poisson de parametre \.

Exercice 218

Soit A > 0. Pour tout entier n > A, soit (Xj,)r>1 une suite de variables aléatoires
i.i.d de loi de Bernoulli de parametre A\/n. Pour n > 1, soit N,, = inf{k > 1: X}, = 1}.

1. Montrer que presque stirement, pour tout n > A\, N,, < oc.

2. Vérifier que N,,/n converge en distribution, lorsque n — oo, vers une loi qu’on
déterminera.

Exercice 219

Soient (f,,),>1 une suite de nombres réels et (02),>; une suite de nombres réels stricte-
ment positifs. Soient aussi g € R et 02 > 0. Pour tout n > 1, soit X,, une variable
aléatoire de loi N (g, 02).

d : .
1. Montrer que X, L> N (p, 0?) si et seulement si p,, — p et 02 — o2
n—oo n—o0

n—oo

2. Montrer que X, converge en distribution vers yu si et seulement si p,, —— u et
n—oo

02— 0,

n—oo

3. Montrer que si 02 —— o0, alors la suite X,, ne converge pas en distribution.
n—oo
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Exercice 220

Soient (X,)n>1 et (Yy)n>1 deux suites de vecteurs aléatoires réels. On suppose que

d d . ,
X, L XetY, L> Y, ou X et Y sont deux vecteurs aléatoires donnés. On suppose

n—oo n—o0
de plus que pour tout n > 1, X,, et Y, sont indépendants. Déterminer la limite en

distribution de la suite de vecteurs aléatoires ((X,,Y})), -

Exercice 221

Soit (X,,),>1 une suite de variables aléatoires i.i.d de Bernoulli de parametre 1/2, et

[e'S) Xn
soit Z = Z o On cherche a déterminer la loi de Z.
n=1

1. Montrer que la variable aléatoire Z est bien définie de maniere non ambigué sur

un événement de probabilité 1.
n

X
2. Pour tout n > 1, on pose Z,, = Z 2—:
k=1

a) Montrer que Z,, converge presque surement vers Z, lorsque n — oc.

b) Pour tout n > 1, déterminer la fonction caractéristique de Z,, en tout réel
t ¢ 2n7.

c¢) En déduire la fonction caractéristique de Z, puis la loi de Z.

Exercice 222

Soit X une variable aléatoire réelle.
1. Supposons que X suit la loi exponentielle de parametre A > 0. Pour chaque entier
n > 1, déterminer la loi de [nX].

2. Supposons a présent que pour tout entier n > 1, [nX | suit la loi géométrique de
parametre 1 — e =™, pour un certain A > 0.
a) Vérifier que n~'|nX | converge presque stirement vers X.
b) Pour chaque n > 1, déterminer la fonction de répartition de n™*[nX|.
¢) En déduire que X suit la loi exponentielle de parametre A.

* Exercice 223

Soit (X,,)n>1 une suite de variables aléatoires i.i.d de loi uniforme sur [0, 1]. Pour tout
n > 1, on note Y,, la médiane empirique de I’échantillon X7, Xs, ..., Xo,,1 (i.e., une fois
ces 2n + 1 variables rangées dans 'ordre, on prend celle du milieu de la liste).

1. Montrer que pour tout n > 1, Y,, admet une densité, et la calculer.

2. En utilisant le théoreme de Scheffé, montrer que 2v/2n (Yn — %) converge en loi,
vers une loi limite qu’on déterminera.
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Indice: on pourra utiliser la formule de Stirling:

lim —(_) 2mn =

n—00 n!

Exercice 224

Soient d > 1 et X@ un vecteur aléatoire de taille d, uniformément distribué dans la
boule euclidienne centrée en 0 et de rayon v/d. Montrer que

X{7 5 N 0.1)

d—00

(cf. exercice[79).

8.2 Théoréme de la limite centrale

Exercice 225

Pour tout n > 1, soit X,, une variable aléatoire de loi de Poisson de parametre n.

1. Montrer que % 9@, N(0,1).
n—oo

1

nok

n
2. En dédui _"E —_ — =
n déduire que e 2 T

Exercice 226

Soit P une mesure de probabilité sur (IR, B(IR)) admettant deux moments et telle que,
si X7 et X5 sont deux variables aléatoires i.i.d de loi P, alors Xl;\/EXQ suit la loi P. On
cherche a montrer que nécessairement, P est une loi normale centrée.

1. Vérifier que le premier moment de P est nul.

2. Soit (X,,)n>1 une suite de variables aléatoires i.i.d de loi P.
a) Vérifier que pour tout n > 1, X1+—\/27X2" suit la loi P.
b) Conclure.

Exercice 227 Un modele multinomial

Soit £ un ensemble fini a K éléments, ou K € IN*. On note ay,...,ax ses éléments.
Soit (X,,)n>1 une suite de variables aléatoires i.i.d & valeurs dans E. Pour tout n > 1 et

k=1,...,K, on note
X 1 <
i3
(1
= ( (1)

et p, = (pn’,... ,ﬁgf()). On suppose que pour tout k =1,..., K, P(X; =a;) > 0.
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1. Montrer que p, converge presque siirement vers un vecteur p € IR¥ que 'on
déterminera, lorsque n — oc.

. d . . o
2. Montrer que v/n(p, — p) @, N4(0,3), out ¥ est une matrice qu’on déterminera.
n—oo

3. On note () la matrice diagonale dont les éléments diagonaux sont les racines carrées
des coordonnées de p. Vérifier que ¥ peut s’écrire comme (QPQ, ou P est une

matrice de projection orthogonale de rang K — 1.

P K (p%) _pk)y2 . .
4. En déduire que n ), % converge en distribution vers une loi du x?, dont

on déterminera le nombre de degrés de libertés.

Exercice 228

Soient X7, Xo, ... des variables aléatoires réelles i.i.d de carré intégrable. Pour n > 1,
soit Z, = /nx== ot u = E[X)] et ¢ = y/Var(X;). En utilisant les résultats des

g

exercices |31] et [191], montrer que Z,, ne converge pas en probabilité lorsque n — oc.

8.3 Intervalles de confiance

Dans cette partie, on s’intéresse a la construction d’intervalles de confiance, souvent
utilisés en statistique. Etant donnée une suite de variables aléatoires i.i.d suivant une
loi paramétrée par un réel 6, une suite d’intervalles de confiance de niveau asymptotique
a € (0,1) est une suite d’intervalles aléatoires (1,,),>1, dont la construction ne dépend pas
de la valeur de 0, tels que pour chaque n > 1, I,, dépend de X,..., X, et qui satisfont
P(l,30) — 1—a.

n—o0

Exercice 229 Rappels sur les quantiles

Soit X une variable aléatoire réelle. Pour tout a € (0, 1), on appelle quantile d’ordre
a de X (ou de la loi de X ) tout réel ¢ satisfaisant P(X < ¢q) > aet P(X >¢) > 1—«
(on pourra revoir Iexercice . Supposons ici que X suit la loi normale centrée réduite.

1. Montrer que pour tout a € (0,1), X a un unique quantile d’ordre «, donné par
I'unique réel ¢ satisfaisant ®(q) = «, ou ® est la fonction de répartition de X.
Dans la suite, on note ¢, le quantile d’ordre o de X.

2. Vérifier que pour tout t € R, &(—t) =1 — d(¢).
3. En déduire que pour tout ¢ > 0,

P(|Z] <t) = 20(t) — 1.

4. En déduire que pour tout o € (0, 1), 'unique réel ¢ satisfaisant P(|Z]| <t) =1—«
est i = qi-2.

5. A Taide de la Table se trouvant page déterminer une valeur approchée des
quantiles d’ordre 90%, 95% et 97.5% de la loi normale centrée réduite.
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Exercice 230

Soit (X, )n,>1 une suite de varjables aléatoires i.i.d de loi de Poisson de parametre
A > 0. Pour tout n > 1, on note X, la moyenne empirique de Xy, ..., X,.

1. a) Montrer que pour tout ¢ > 0,
P(|X, — X < tVA/v/n) — P(|Z] < 1),
n—oo

ol Z est une variable aléatoire réelle de loi normale centrée réduite.

b) Soit ¢ > 0. Montrer que I'événement | X, — A| < tv/A/\/n est équivalent
I,(t) 3 A, ou I,(t) est un intervalle dont l'expression ne dépend pas de A, et
qu’on déterminera Indication : il faudra résoudre une inéquation du second
degré en \).

c¢) En déduire 'expression d’une suite d’intervalles de confiance de niveau asymp-
totique a.

2. a) Montrer que X,, + 1/n converge en probabilité vers une constante.
b) En déduire que B
Xn— A
Jn—= D, N (0,1)
VXn+1/n noe
(on utilisera le théoréme de Slutsky).
¢) En déduire que pour tout ¢ > 0,

_ WX, +1
P (X, A < VXt 1/ P(|z| <),
\/ﬁ n—00

ol Z est a nouveau une variable aléatoire réelle de loi normale centrée réduite
(on utilisera le théoreme de Slutsky).

d) En déduire I'expression d’une suite d’intervalles de confiance de niveau asymp-
totique a.

3. Pour les deux suites d’intervalles de confiance définies précédemment, indiquer a
quelle vitesse leurs longueurs tend presque stirement vers zéro, lorsque n — oo.

Exercice 231

Soit (X,),>1 une suite de variables aléatoires i.i.d de loi exponentielle de parametre
A > 0.

1. Pour tout a € (0, 1), trouver un intervalle de confiance de niveau asymptotique «
pour A, i.e., trouver une suite d’intervalles aléatoires (I,,),>1, qui ne dépendent pas
de A, et tels que P(I, 2 \) —— 1 — a.

n—oo
De méme que dans ['exercice précédent, on procedera de deux manieres différentes:

sans utiliser le théoreme de Slutsky, puis en ['utilisant.
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Exercice 232

Soit (X, )n>1 une suite de variables aléatoires i.i.d de loi de Bernoulli de parametre
p €0, 1].

1.

Pour tout « €]0, 1], trouver un intervalle de confiance de niveau asymptotique o
pour p, i.e., trouver une suite d’intervalles aléatoires (I,,),>1, qui ne dépendent pas
de p, et tels que P(I, 5 p) — 1 — «a.

n—oo

A nouveau, on procédera de deuxr manieres différentes: sans utiliser le théoréeme
de Slutsky, puis en lutilisant.

Exercice 233

Soit f(x) =

_c
VO —x

To<z<p, pour tout x € R, ou # > 0 est un nombre réel fixé et C

est un nombre réel.

1.

Déterminer la valeur de C, en fonction de 6, de sorte que f soit une densité par
rapport a la mesure de Lebesgue.

Dans la suite, on prend cette valeur de C, et on considere une suite (X,),>1 de
variables aléatoires i.i.d admettant f comme densité par rapport a la mesure de
Lebesgue.

2. Calculer la limite presque sire de X,,, lorsque n — oo.

3. Déterminer deux réels a et b, qui ne dépendent pas de 0, tels que \/n

X, —al
bo

converge
en distribution vers la loi normale centrée réduite.

Soit a € (0,1). Déduire de la question précédente une suite d’intervalles de con-
fiance de niveau asymptotique a pour 6, i.e., une suite d’intervalles (I,,),>1 telle
que pour tout n > 1, I,, ne dépend que de Xy,..., X, et ne dépend pas de 0, et
satisfaisant P(I, 2 0) — 1 — a (pour tout 5 € (0,1), on notera gz le quantile

d’ordre § de la loi normale centrée réduite).

Pour tout n > 1, on pose M,, = max(X,...,X,).
a) Vérifier que M,, < 0 presque strement.

b) Déterminer la fonction de répartition de n? “ (on rappelle qu’une fonc-

tion de répartition est définie sur IR tout entier).

converge en distribution, vers une loi dont on donnera

En déduire que n?
la fonction de répartition.

Soit av € (0,1). Déduire de la question précédente une suite d’intervalles de confi-
ance de niveau asymptotique a pour 6.

Comparer la précision de cet intervalle de confiance avec celui obtenu a l’aide du
théoreme de la limite centrale, a la question 4. Commenter.
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n

9. Soit n > 1. A l'aide du calcul de la fonction de répartition de n? , pro-

g

poser un intervalle de confiance de niveau non-asymptotique « pour 6, i.e., un
intervalle I,, ne dépendant que de Xi,..., X, et non de 0, et satisfaisant 1’égalité

P(I,30)=1—-a.
9 Vecteurs gaussiens

9.1 Rappels d’algebre linéaire

Dans les exercices de cette partie, d > 1 est un entier.

Exercice 234 Rappels sur les matrices symétriques

1. Soit A € R™9 une matrice symétrique. Montrer qu’elle est diagonalisable avec
matrice de passage pouvant étre choisie orthogonale, i.e., qu’il existe une matrice
diagonale D et une matrice orthogonale P telles que A = PDP'.

. 1 une matrice symétrique. ntrer que les assertions suivantes son
2. Soit A € R¥*? une mat symétrique. Mont e les assertions antes sont
équivalentes :

(i) A est une matrice de projection (i.e., A = A)

(ii) Toutes les valeurs propres de A valent 0 ou 1.
3. Soit A € R¥<. Montrer que A est la matrice d’une projection orthogonale si et
seulement si A est symétrique et A2 = A. On rappelle qu'une projection orthog-

onale est une application linéaire u : R? — IR satisfaisant u o u = u et dont le
noyau et I'image sont orthogonaux.

4. Soit A € R™? une matrice symétrique. Montrer que A est semi-définie positive
(ie., " Az > 0 pour tout x € IR?) si et seulement si toutes ses valeurs propres
sont positives ou nulles.

5. Soit A € IR™? une matrice symétrique. Montrer que les assertions suivantes sont
équivalentes :

(i) A est définie positive (i.e., 2" Az > 0 pour tout z € R*\ {0})
(ii) A est semi-définie positive et inversible

(iii) Toutes les valeurs propres de A sont strictement positives.

Exercice 235 Matrices de projection

On rappelle qu'une matrice P € IR%*? est une matrice de projection si et seulement
si P? = P. Si de plus, I'image et le noyau de P sont orthogonaux, on dit que P est une
matrice de projection orthogonale.
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1. Soit P € R%4,
a) Montrer que P est une matrice de projection si et seulement si I; — P est une
matrice de projection.
b) Dans ce cas, montrer que ker(P) = Im(/; — P) et ker(I; — P) = Im(P).
c¢) En particulier, vérifier que rang(l; — P) = d — rang(P).
2. Soit P € R
a) Montrer que P est une matrice de projection orthogonale si et seulement si
I, — P est une matrice de projection orthogonale.

3. Vérifier que si P est une matrice de projection, alors Tr(P) = rang(P).

4. Montrer qu'une matrice P € IR%*¢ est une matrice de projection orthogonale si et
seulement si P2 =P = P".

5. Montrer qu'une matrice de projection orthogonale est toujours une matrice symétrique

semi-définie positive.
6. Montrer que la seule matrice de projection orthogonale définie positive est la ma-
trice identité.

7. Soit u € R%.
a) Montrer que uu' est une matrice de projection orthogonale si et seulement si
u=0ou |lul| =1

b) Dans ce cas, déterminer le noyau et 'image de cette matrice de projection or-
thogonale, ainsi que le noyau et 'image de la matrice de projection orthogonale
Id — U'LLT.

Exercice 236 Une caractérisation des matrices carrées de rang 1

1. Soit A € R
a) Montrer que A est de rang 1 si et seulement s'il existe u, v € IR non nuls tels
que A =wv'.
b) Vérifier que, dans ce cas, Tr(A4) = u'v.
2. Soit A € R¥™? une matrice symétrique.
a) Montrer que A est de rang 1 si et seulement s’il existe u € IR? non nul tel que
A=uu' ou A= —uu'.
b) Montrer que si de plus, A est semi-définie positive, alors A est de rang 1 si et
seulement s’il existe v € IR? non nul tel que A = v .
c¢) Dans le cas de la question précédente, vérifier que A est une matrice de pro-

jection orthogonale si et seulement si |Jul|; = 1.

Exercice 237 Racines d'une matrice

Soit A € IR™? une matrice symétrique semi-définie positive.

1. Montrer Uexistence d’'une matrice M € IR%*? satisfaisant MM T = A. Cette ma-
trice est-elle unique ?
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Soit r le rang de A. Montrer I'existence d'une matrice M € IR?" satisfaisant
MM' = A.

Montrer I'existence et 'unicité d’une matrice M € IR%*? symétrique et semi-définie
positive telle que A = M?. On note A'/? cette matrice.

Supposons dans cette question que A est définie positive.
a) Vérifier que A'/? est définie positive.
b) Montrer que (AY/2)~t = (A=1)/2 (qu’on note alors, sans ambiguité, A~1/2).

Exercice 238

Soit ¥ € IR?*? une matrice symétrique semi-définie positive.

1.

Montrer I'existence d'une matrice A € IR¥? et d’un entier r € {1,...,d} tel que
ATAT = rd, OU I g € IR™*? est la matrice diagonale dont les r premiers coefficients
diagonaux valent 1 et tous les autres sont nuls.

2. Montrer l'existence d'une matrice B € IR™? telle que BYB' = I,, la matrice
identité de taille r.

3. Vérifier que r est le rang de X.

4. Vérifier que si ¥ est inversible, alors r = d et on peut prendre A = ¥~1/2,

Exercice 239 Rang d’'une matrice

Dans cet exercice, p,q,r > 1 sont des entiers fixés.
1. Montrer que pour toute A € IRP*?, rang(A") = rang(A).

o

3.
4.

Montrer que pour toute A € IRP*9 et pour tout A € IR\ {0}, rang(AA) = rang(A).
Montrer que pour toutes matrices A, B € RP*9, rang(A+ B) < rang(A) +rang(B).
Soient A € RP*? et B € IR?*". Montrer que rang(AB) < min(rang(A), rang(B)).

Exercice 240
Soit M € IRP*?, ou p,q > 1.

1.
2.

Vérifier que rang(M) < min(p, q).

Vérifier que MM est inversible si et seulement si rang(M) = p (ce qui requiert
nécessairement que p < q).

Vérifier que M T M est inversible si et seulement si rang(M) = ¢ (ce qui requiert
nécessairement que q < p).

9.2 Vecteurs gaussiens

Dans cette partie, d > 1 est un entier et on note Sy I’ensemble des matrices symétriques
réelles de taille d, S; I'ensemble de celles qui sont semi-définies positives et S; I'ensemble
de celles qui sont définies positives.
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Exercice 241

Soient X7, X5, X3 des variables aléatoires réelles i.i.d de loi normale centrée réduite.
Déterminer la loi du vecteur aléatoire (X7, X7 + Xo, X7 + X5 + X3). Ce vecteur admet-il
une densité par rapport a la mesure de Lebesgue 7

Exercice 242 Support d'une loi normale

Soient 11 € R et X € . En fonction de p et de X, déterminer le support de Ny(u, X)

(cf. Exercice [35)).

Exercice 243

Soient Xj, ..., X, des variables aléatoires gaussiennes indépendantes (n € IN*). Pour
i=1,...,n, on note y; la moyenne de X; et o? sa variance. Pour tous réels ay, ..., a,,b,
déterminer la loi de a1 X1 + ... + a, X, + 0.

Exercice 244

1. Soient Xy,..., X, des vecteurs aléatoires réels indépendants de taille d > 1, avec
n € IN*. On suppose que les X; sont de carré intégrable, et on note pq, ..., u, leurs
espérances respectives ainsi que X, ..., >, leurs matrices de variance-covariance
respectives. Pour toutes matrices Ay,..., A, € RP*? et tout vecteur b € IR?, ol
p > 1, déterminer 'espérance et la matrice de variance-covariance de A; X; +...+
A X, + 0.

2. Soient X7i,..., X, des vecteurs aléatoires gaussiens indépendants de taille d > 1.
Pour ¢ = 1,...,n, on note u; l'espérance de X; et >; sa matrice de variance-
covariance.

a) Vérifier que le vecteur (Xi,...,X,), de taille nd, est un vecteur gaussien.
b) A T'aide de la question 1, en déduire la loi de A1 X + ...+ A, X, + b, pour
toutes matrices Ay, ..., A, € IRP*? et tout vecteur b € IRP, ou p > 1.

3. Retrouver le résultat de la question précédente a I’aide des fonctions caractéristiques.

Exercice 245 Produit des composantes d'un vecteur gaussien

Soit X un vecteur gaussien centré de taille d > 1, dont on note les coordonnées
Xi,..., X4 Le but de 'exercice est de trouver une formule pour E[X; X, ... Xy].
1. Vérifier que si d est impair, E[X; X5 ... X, = 0.
2. Dans cette question, on suppose que d est pair, et on note p = d/2. Soit F(v) =
Ee* X], pour tout v € R
a) Vérifier que pour tout v € IRY, F(v) est bien défini qu’on a l'identité F(v) =
e/ 2)”TE”, ou X est la matrice de variance-covariance de X.
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b) Montrer que la fonction F ainsi définie est de classe C*° sur IR? et qu’on a
I’égalité

oF
ElX,... X4 ==——(0).
[ ! d] 31}1...8vd( )
c¢) On appelle un appariement de {1, ..., 2p} tout ensemble de la forme { (i1, i2), (i3,74), . . .
ou 41,12, ...,1%2, sont deux a deux distincts et i1 < ig,13 < i4,...,%9,-1 < lgp.

On note A, l'ensemble des appariements de {1,...,2p} (on rappelle que
d = 2p). Montrer, a 'aide des questions précédentes, que

E[X;.. Xyl = Y [] cov(Xi, X))

AcA, (i,5)€A

indication : on pourra écrire F(v) = —v) pour tout v € RY, et
dicat F (v I
k=0 ’

montrer que seul le terme correspondant a k = p contribue a la d-éme dérivée
partielle en O de F' par rapport a vy, ..., v4).

Exercice 246 Calcul de la fonction caractéristique d'un vecteur gaussien
Soit X ~ Ny(p, ), oud>1, ueRet L €S
1. Vérifier que pour tout v € RY, E[e' X] = ¢ #E[e® Y] ot Y ~ Ny (0, X).

2. Soit v € R%. A l’aide de l'exercice précédent, vérifier que pour tout entier k > 1,

E[(UTY)k] _ {O si k est impair

(2pp,( TYw)P si k est pair, avec p = k/2.

T vTEv

3. En déduire que pour tout v € IR, ]E[Q“’TX] — v pm

Exercice 247 Des variables aléatoires gaussiennes de covariance nulle, mais non indépendantes
(1)

Soit X une variable aléatoire réelle gaussienne, centrée réduite et ¢ > 0. On définit la

-]] ]/ .

—X sinon.

Déterminer la loi de X..
Montrer que le vecteur (X, X,.) n’est pas un vecteur gaussien.

Montrer que X et X, ne sont pas indépendantes.

- W e

Montrer que pourtant, il existe une valeur de ¢ telle que cov(X, X.) = 0.
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Exercice 248 Des variables aléatoires gaussiennes de covariance nulle, mais non indépendantes
(2)

Soit X une variable aléatoire réelle de loi normale centrée réduite et ¢ une variable
aléatoire indépendante de X satisfaisant P(e = 1) = P(e = —1) = 1/2. On pose Y = ¢X.

1. Vérifier que Y ~ N(0,1).

2. Vérifier que cov(X,Y) = 0.

3. Vérifier que X et Y ne sont pas indépendantes.

4

. En déduire que le vecteur (X,Y) n’est pas un vecteur gaussien, et retrouver ce
résultat a ’aide d’un second raisonnement.

Exercice 249

Soit (Xj, X2, X3) un vecteur aléatoire réel de taille 3, continu, et de densité donnée
par

1
f(x17$27x3) = CeXp <_§<3$% + ng + .’17% + 41’1332 - 2$1x3 - 21'2375)) ’ v(ajla x27$3) € ]:Rga

ol C' est un nombre positif.
1. Déterminer la loi de (X7, Xo, X3).
2. Chercher deux nombres réels a et b tels que aX;+bX5 soit indépendant de (X7, X3).

Exercice 250

Soient X7, Xs, X3 trois variables aléatoires réelles i.i.d normales centrées réduites. On
pose S =X +Xo+ Xzet V= (X; — X))+ (X1 — X3)? + (X3 — X3)%

1. Déterminer la loi de S.

2. Montrer que S et V sont indépendantes.

3. Chercher un nombre strictement positif C' tel que C'V suit une loi du y», dont on
précisera le nombre de degrés de liberté.

Exercice 251

Soit (X,Y’) un couple aléatoire continu de densité donnée par

22+y2

1
f($7y) = ;(lx,y>0 + ]lx,y<0>€_ 2 ) V([L',y) € ]1:{2'

Démontrer que X et Y sont toutes les deux Gaussiennes centrées réduites.
Montrer en revanche que (X, Y’) ne suit pas une loi normale.

Calculer la covariance entre X et Y.

- W o

X et Y sont-elles indépendantes 7
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Exercice 252
Soit X ~ Ng(i,¥), ot pe R et ¥ € S

1. Montrer I'existence d'un entier r > 1 et d’une matrice A € IR™*? tels que A(X —
1) ~ N0, ).
2. En déduire que (X — p)TATA(X — p) ~ 2.

Exercice 253

Soit (X, )n,>1 une suite de vecteurs aléatoires réels i.i.d de carré intégrable. Montrer
I'existence d’un entier » > 1, d’une matrice M € IR"*?% et d’un vecteur b € R? tels que

(X — b)TM(X, —b) —2 2.

T
n—oo

Exercice 254

Soit X ~ Ny(u, 1), ot € R%. Soit P € IR?*? une matrice de projection orthogonale.
Montrer que PX et (I; — P)X sont indépendants.

Exercice 255 Régression linéaire

Soient x1,...,x, des vecteurs fixés de taille d (n > 1). Pour i = 1,...,n, soit Y; =
/B +e;, ot B e€Ret gq,..., e, sont des variables aléatoires i.i.d de loi N'(0,0?), avec
0? > 0. Dans cet exercice, on suppose que Yi,...,Y, sont des données observées, et
que les vecteurs xq,...,x, sont connus. En revanche, les variables ¢4, ...,&, ne sont pas
observées (on les appelle variables de bruit). Enfin, le vecteur 3 est inconnu, et on cherche

a l'estimer a aide des observations.

1. On pose Y le vecteur aléatoire de taille n dont les coordonnées sont Yi,... Y.
Montrer qu’on peut écrire Y = AB +¢, on A € IR"*? est une matrice a déterminer
et € est un vecteur gaussien dont on précisera la loi.

2. Soit A un minimiseur de t € R% +— S0 (V; — 2] )% = ||V — At||* (on appelle § un
estimateur des moindres carrés ordinaires de [3).

a) Vérifier que la fonction g : t € R? + ||Y — At||? est convexe.

b) Montrer que g a bien au moins un minimiseur.

c¢) Vérifier que AB est la projection orthogonale de Y sur I'espace engendré par
les colonnes de Y.

d) Montrer que si A est de rang d, alors B est unique et on a

B=(ATA)ATY.

3. Dans cette question, on suppose que A est de rang d.
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a) Montrer que nécessairement, n > d (autrement dit, on a plus d’observations
que de coefficients a estimer dans le vecteur inconnu f3).
b) Déterminer la loi de 6 et vérifier que 6 est un estimateur non biaisé de 3, i.e.,
Ejf =5
¢) Exprimer E[||8 — 3]|?] en fonction de o2 et A.
d) Montrer que les vecteurs aléatoires ﬁ et Y — Aﬁ sont indépendants.
e) Supposons que n > d. Montrer que ndeY ABH2 est un estimateur sans

biais de 02, ie., E[-1-||Y — AB|]?] = 0?
f) Montrer que %Y — AB|? ~ Xoa-

Exercice 256

Vérifier que si X ~ Ny(0, 1), alors UX ~ Ny(0, ;) quelle que soit la matrice orthog-
onale U € R4

Exercice 257

Soit X un vecteur gaussien centré réduit de dimension d > 1, et P € IR%*? une matrice
de projection orthogonale. Montrer que ||PX||3 est une variable de loi du chi-2, dont on
déterminera le nombre de degrés de liberté.

Exercice 258
Soient X et Y deux variables aléatoires réelles, telles que le vecteur (X,Y’) soit un
vecteur gaussien.

1. Montrer I'existence d'un réel a tel que X — aY et Y soient indépendantes.
2. En déduire E[X|Y].

Exercice 259

Soient X et Y deux vecteurs aléatoires réels de tailles respectives p et ¢, tels que le
vecteur (X,Y) soit un vecteur gaussien.

1. Montrer lexistence d'une matrice A € IRP*? telle que les vecteurs X — AY et Y
soient indépendants.
2. En déduire E[X|Y].

Exercice 260

1. Soit X = (X3, X3) un vecteur gaussien de taille 2.
a) Trouver un réel a tel que X3 + aX; est indépendante de X; On écrira a a
laide des paramétres de la loi de X ).
b) En déduire I'espérance conditionnelle de X, sachant X;.
c¢) En déduire aussi la loi conditionnelle de X5 sachant X; = x, pour tout = € RR.
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2. Plus généralement, soit X un vecteur gaussien de taille d > 2. On note X; le
vecteur formé des k premieres coordonnées de X, et X, le vecteurs formé des
d — k suivantes, ou k est un entier tel que 1 < k < d — 1. Soit ¥ la matrice de
variance-covariance de X. On décompose Y par blocs:

A B
== (¢ 1)
ot A € RF* B e RMU-H e RUP*F et D e RUEP*EH),

a) Vérifier que A est la matrice de variance-covariance de Xy, D celle de Xs, et
que B=CT.

b) Vérifier que X; et X5 sont indépendants si et seulement si B = 0.

¢) On suppose dans cette question que A est inversible. Trouver alors une matrice
M € RU-F)*k telle que Xy — M X, et X, sont indépendantes, et en déduire
I’espérance conditionnelle de X5 sachant X, puis la loi conditionnelle de X,
sachant X; = z, pour tout € IR*.

d) (Question algébriquement difficile a essayer de résoudre aprés l’examen) Cal-

culer I'espérance conditionnelle de X5 sachant X; dans le cas général ou A
n’est pas nécessairement inversible.

Exercice 261
Soit X = (Xi,...,Xy) un vecteur gaussien de taille d > 1.

1. Montrer que X; est indépendante du vecteur (Xo, ..., Xy) si et seulement si X;
est indépendante de chacun des X;, 1 =2,...,d.

2. Montrer que X1, ..., Xy sont mutuellement indépendantes si et seulement si elles
sont indépendantes deux a deux.

Exercice 262

Soit (X, Y, Z) un vecteur gaussien centré. On suppose que Y et Z sont indépendantes.

Montrer que E[X|(Y, Z)] = E[X|Y]| + E[X|Z] p.s. (on distinguera les cas ou Var(Y) =0
et/ou Var(Z) = 0). Rectifier cette égalité lorsque (X, Y, Z) n’est pas centré.

* Exercice 263 Cas particulier de la Méthode Delta

Soit (X,)n>1 une suite de vecteurs aléatoires réels dans IR? (d > 1) i.i.d de carré

intégrable et g : IRY — IR? une fonction de classe C', ott p > 1. On pose x le moment
d’ordre 1 de X7, et ¥ sa matrice de variance-covariance.

1. Rappeler la loi limite de /n(X,, — u), lorsque n — oo.

2. On cherche & montrer que /n(g(X,) — g(u)) converge en distribution, lorsque
n — oo.
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a) Montrer que pour tout n > 1,

ou A, est la matrice aléatoire

1
A, :/ JgtX, + (1 —t)u)dt.
0

(pour tout z € IR, Jg(z) € RP*? est la matrice Jacobienne de g calculée au
point x).

b) Montrer que A, converge en probabilité vers Jg(u).

c¢) Conclure.

* Exercice 264 Une formule d'intégration par parties, cas univarié

Soit X ~ N(0,1) et f : IR — IR une fonction dérivable. On suppose que f et sa
dérivée sont a croissance au plus exponentielle, i.e., il existe deux constantes ¢q,co > 0
telles que max(| f(z)|, | f/()]) < 1! pour tout z € RR.

1. Montrer, en justifiant toutes les étapes avec soin, que E[X f(X)] = E[f'(X)].

2. Réciproquement, soit Y une variable aléatoire réelle telle que E[Y g(Y)] = E[¢'(Y)]
pour toute fonction dérivable g bornée et de dérivée bornée. Le but de cette
question est de montrer qu’alors, nécessairement, ¥ ~ A(0,1). Soit h: R — R
une fonction dérivable, bornée et de dérivée bornée. On note my le nombre réel
défini comme my, = E[h(X)] (ot on rappelle que X ~ N(0,1)).

a) Montrer qu’il existe une unique fonction, notée gy, dérivable sur IR, bornée,
et solution de ’équation différentielle v/ — xy = h — my,.

b) Montrer que gj, est elle aussi bornée.

c¢) En déduire que E[A(Y)] = my,.

d) Conclure.

Exercice 265 Une borne d’erreur du théoreme de la limite centrale

Soient Xi,..., X, des variables aléatoires réelles i.i.d de carré intégrable, ou n > 1
est un entier fixé. Soit Z, = /n(X, — p)/o, ot u = E[Xi] et 0> = Var(X;). Soit
Z une variable aléatoire de loi normale centrée réduite. Soit h : R — IR une fonction
dérivable satisfaisant [|h|le < 1 et ||A/||oc < 1 ol1, pour toute fonction g : R — IR bornée,
19llcc = supger l9(2)]-

1. Montrer que E[h(Z,)] — E[h(Z)] — 0. Le but de cet exercice est de majorer,

de maniere non-asymptotique, E[h(Z,)] — E[h(Z)], de maniére indépendante de h,
par une suite qui tend vers zéro lorsque n — co. Pour cela, on suppose dans la
suite que X; admet quatre moments.
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. Expliquer pourquoi sans perte de généralité, on peut supposer que p = 0 et 02 = 1.
On fera cette hypothese dans la suite, et on notera p = E[| X [*] et = E[X}].

. Montrer qu’il existe une unique fonction f : R — IR dérivable et bornée, solution
de I’équation différentielle y' — zy = h — E[h(Z)].

. Montrer que f est deux fois dérivable et satisfait ||f||cc < 2 et || f/]|coc < /2/7 et
1"l < 2.

5. Vérifier que E[h(Z,)] — E[(Z)] = E[f(Zn) — Znf(Zy)]-

. Pouri=1,...,n, on note Z,,; = \/Lﬁzj#Xj = Zn, — Xi/\/n.
a) Vérifier que

BU(40) = 20 ()] = B | S X0 ) = 1)~ (= Z0) ()

(1 - — ZX ) f'(Z)

b) A T'aide d’un développement de Taylor, montrer que la valeur absolue de la
premiére espérance ci-dessus est majorée par p/+/n.
¢) Montrer que la valeur absolue de la seconde espérance est majorée par

] |

p 2K
i)~ B2 < 225

n

S(1-x?)

i=1

2/m
n

E

d) En déduire que

* Exercice 266 Une formule d'intégration par parties, cas multivarié

Soit X un vecteur gaussien centré de taille d > 1, et de matrice de variance-covariance
¥ eSS Soit f: R — IR une fonction différentiable. On suppose que f et ses dérivées
partielles sont a croissance au plus exponentielle, i.e., il existe deux constantes c¢q,co > 0

telles que max(|f(z)|,|00f (z)], ..., |0af (x)]) < cre®l® pour tout x € IR. Ici, on note 9; f
la dérivée partielle de f par rapport a la j-eme coordonnée, pour j =1,...,d.
1. Montrer, en justifiant toutes les étapes avec soin, que pour tout k =1,...,d,

E[X.f(X Z 5,4 B[0; f(X)).

2. A Tl'aide de la question précédente, retrouver I'expression de E[X] ... X;] démontrée

dans I'exercice 245
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Table 1: Table des valeurs de P(Z <t) ou Z ~ N(0, 1), pour des valeurs positives de t.

Deuxiéme décimale de ¢
t 0.00 0.01 0.02 0.03 0.04\ 0.05 0.06 0.07 0.08 0.09

0.0 | 0.5000 0.5040 0.5080 0.5120 0.5160 | 0.5199 0.5239 0.5279 0.5319  0.5359
0.1 | 05398 0.5438 0.5478 0.5517 0.5557 | 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 | 05793 0.5832 0.5871 0.5910 0.5948 | 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 | 0.6179 0.6217 0.6255 0.6293 0.6331 | 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 | 0.6554 0.6591 0.6628 0.6664 0.6700 | 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 | 0.6915 0.6950 0.6985 0.7019 0.7054 | 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 | 0.7257 0.7291 0.7324 0.7357 0.7389 | 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 | 0.7580 0.7611 0.7642 0.7673 0.7704 | 0.7734 0.7764 0.7794 0.7823  0.7852
0.8 | 0.7881 0.7910 0.7939 0.7967 0.7995 | 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 | 08159 0.8186 0.8212 0.8238 0.8264 | 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 | 0.8413 0.8438 0.8461 0.8485 0.8508 | 0.8531 0.8554 0.8577 0.8599  0.8621
1.1 | 0.8643 0.8665 0.8686 0.8708 0.8729 | 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 | 0.8849 0.8869 0.8888 0.8907 0.8925 | 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 | 09032 0.9049 0.9066 0.9082 0.9099 | 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 | 09192 0.9207 09222 0.9236 09251 | 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 | 09332 09345 09357 0.9370 0.9382 | 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 | 09452 0.9463 0.9474 0.9484 0.9495 | 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 | 09554 0.9564 0.9573 0.9582 0.9591 | 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 | 09641 0.9649 0.9656 0.9664 0.9671 | 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 | 09713 09719 09726 0.9732 0.9738 | 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 | 0.9772 09778 0.9783 0.9788 0.9793 | 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 | 09821 0.9826 0.9830 0.9834 0.9838 | 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 | 09861 09864 0.9868 0.9871 0.9875 | 0.9878 0.9881 0.9884 0.9887  0.9890
2.3 | 09893 0.9896 0.9898 0.9901 0.9904 | 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 | 09918 09920 0.9922 0.9925 0.9927 | 0.9929 0.9931 0.9932 0.9934  0.9936
2.5 09938 09940 0.9941 0.9943 0.9945 | 0.9946 0.9948 0.9949 0.9951  0.9952
2.6 | 0.9953 0.9955 0.9956 0.9957 0.9959 | 0.9960 0.9961 0.9962 0.9963  0.9964
2.7 | 0.9965 0.9966 0.9967 0.9968 0.9969 | 0.9970 0.9971 0.9972 0.9973  0.9974
2.8 | 09974 0.9975 0.9976 0.9977 0.9977 | 0.9978 0.9979 0.9979 0.9980  0.9981
2.9 | 0.9981 0.9982 0.9982 0.9983 0.9984 | 0.9984 0.9985 0.9985 0.9986  0.9986

3.0 | 0.9987 0.9987 0.9987 0.9988 0.9988 | 0.9989 0.9989 0.9989 0.9990  0.9990
3.1 | 0.9990 0.9991 0.9991 0.9991 0.9992 | 0.9992 0.9992 0.9992 0.9993  0.9993
3.2 1 09993 0.9993 0.9994 0.9994 0.9994 | 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 | 09995 0.9995 0.9995 0.9996 0.9996 | 0.9996 0.9996 0.9996 0.9996  0.9997
3.4 | 09997 0.9997 0.9997 0.9997 0.9997 | 0.9997 0.9997 0.9997 0.9997  0.9998

*Pour ¢ > 3.50, la valeur est plus grande que 0.9998.
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