
Théorie des probabilités
Livret d’exercices

1 Rappels de théorie de la mesure et d’intégration

Exercice 1

Soit (E, E) un espace mesurable, ν une mesure sur (E, E) et f : E → IR une fonction
mesurable.

1. Montrer que si f est positive et satisfait
∫
E
f(x) dν(x) = 0, alors elle est nulle

ν-presque partout.

2. Montrer que si f est strictement positive et
∫
A
f(x) dν(x) = 0 pour un certain

A ∈ E , alors ν(A) = 0.

3. Montrer que pour tout A ∈ E , si ν(A) = 0, alors
∫
A
f(x) dν(x) = 0.

Exercice 2

Soit (E, E) un espace mesurable, et soit ν une mesure sur (E, E). Montrer que si f
et g sont deux fonctions mesurables sur E, à valeurs réelles, satisfont

∫
A
f(x) dν(x) =∫

A
g(x) dν(x) quel que soit A ∈ E , alors f = g ν-presque partout.
Indice : on pourra considérer les ensembles mesurables {x ∈ E : f(x) < g(x)} et

{x ∈ E : f(x) > g(x)}, et utiliser des résultats de l’exercice précédent.

Exercice 3 Mesures de comptage

Soit (E, E) un espace mesurable tel que pour tout x ∈ E, {x} ∈ E . Soit F ⊆ E un
sous-ensemble au plus dénombrable.

1. Montrer que F ∈ E .

2. Soit νF : B ∈ E 7→ #(B ∩ F ).
a) Vérifier que νF est une mesure sur (E, E). On l’appelle mesure de comptage

de F .
b) Vérifier que νF =

∑
x∈F δx où, pour tout x ∈ E, δx est la mesure de Dirac en

x.
c) Soit f : E → IR une fonction mesurable et positive. Montrer que∫

E

f(x) dνF (x) =
∑
x∈F

f(x).
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d) Montrer que pour toute fonction mesurable f : E → IR, f ∈ L1(νF ) si et
seulement si

∑
x∈F |f(x)| <∞ et, le cas échéant,∫

E

f(x) dνF (x) =
∑
x∈F

f(x).

Exercice 4

Soit (E, E) un espace mesurable et µ et ν deux mesures sur (E, E). Soient α et β deux
nombres réels positifs quelconques.

1. Vérifier que αµ+ βν est une mesure sur (E, E).

2. Soit f : E → IR une fonction mesurable telle que f ∈ L1(µ) ∩ L1(ν). Montrer
qu’alors f ∈ L1(αµ+ βν) et que∫

E

f(x) d(αµ+ βν)(x) = α

∫
E

f(x) dµ(x) + β

∫
E

f(x) dν(x).

Exercice 5

Soient f et g les fonctions définies sur IR par f(x) = x et g(x) = x2, pour tout x ∈ IR.
Calculer

∫
A
f(x) dµ(x) et

∫
A
g(x) dµ(x), lorsque :

1. µ est la mesure de Lebesgue de IR et A = [0, t], où t > 0 ;

2. µ est la mesure de comptage de IN et A = {0, 1, . . . , n}, où n ≥ 0 est un entier ;

3. µ est la mesure de comptage de {0, 1} et A = {0, 1} ;

4. µ = δ1 + (1/2)δ2 + . . .+ (1/n)δn et A = IR, où n est un entier strictement positif ;

5. µ = λ+ ν et A = [−t, t], où λ est la mesure de Lebesuge sur IR, ν est la mesure de
comptage de Z et t est un réel strictement positif ;

6. µ est la mesure absolument continue par rapport à la mesure de Lebesgue, de
densité donnée par x21x∈[−1,1], x ∈ IR, et A = IR.

Exercice 6

Soit ν la mesure de comptage de IN.

1. Les fonctions (x, y) ∈ IR2 7→ e−xy et (x, y) ∈ IR2 7→ e−xy
2

sont-elles intégrables sur
IN∗× [0,∞[ par rapport à la mesure produit ν⊗λ, où λ est la mesure de Lebesgue
de IR ?

2. Soit µ la mesure sur IR absolument continue par rapport à la mesure de Lebesgue,

admettant pour densité la fonction x ∈ IR 7→ 1

1 + x2
.

a) La fonction (x, y) ∈ IR2 7→ e−xy
2

est-elles intégrable sur IN∗ × IR par rapport
à la mesure produit ν ⊗ µ ?
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b) La même fonction est-elle intégrable sur IN∗ × [1,∞[ par rapport à la mesure
produit ν ⊗ µ ?

3. Après avoir justifié son existence, calculer∫
IN∗×[0,∞[

e−x
2y dν(x) dy.

4. Déterminer la limite, lorsque n→∞, de

1

log n

∫
{1,2,...,n}×[0,∞[

e−x
2y2

dν(x) dy.

Exercice 7

Pour tout x ∈ IR, on note µx la mesure sur IR admettant une densité fx par rapport
à la mesure de Lebesgue, donnée par

fx(y) =
1√
2π
e−

(y−x)2

2 , ∀y ∈ IR.

1. Démontrer que pour tout x ∈ IR, µx est une mesure de probabilité.

2. Calculer l’intégrale ∫
IR

(∫
IR

y(x+ y) dµx(y)

)
dν(x)

lorsque ν est :
a) la mesure Dirac en 0;
b) δ0 + δ1;
c) la mesure uniforme sur [0, 1];
d) la somme de la loi exponentielle de paramètre 1 et de la mesure de comptage

de {−1, 1}.
e) la somme de la loi exponentielle de paramètre 1 et de la loi uniforme sur
{−1, 1}.

Exercice 8

1. En utilisant le changement de variables x = r cos θ, y = r sin θ, dont on précisera
le domaine, et en justifiant rigoureusement et précisément toutes les étapes du
changement de variable, calculer l’intégrale double∫

IR2

e−
x2+y2

2 dx dy.
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2. En déduire la valeur de

∫
IR

e−
x2

2 dx.

Exercice 9 Tribus engendrées par des parties

Soit Ω un ensemble non vide quelconque. On rappelle que pour toute famille non vide
G de parties de Ω, on note σ(G) la tribu engendrée par G, i.e., la plus petite (au sens de
l’inclusion) tribu de Ω contenant G.

1. Vérifier que pour toute famille non vide G de parties de Ω, σ(G) existe bien, et
qu’elle est donnée par l’intersection de toutes les tribus de Ω contenant G.

2. Soit G une famille non vide de parties de Ω. Montrer que G est donnée par
l’ensemble de toutes les unions au plus dénombrables d’intersections au plus dénombrables,
ainsi que des intersections au plus dénombrables d’unions au plus dénombrables,
d’éléments de G et/ou de leurs complémentaires.

3. Montrer que pour tout A ⊆ Ω, σ({A}) = {∅, A,A{,Ω}.

Exercice 10 Tribus engendrées par des fonctions

Soit Ω un ensemble non vide quelconque et (E, E) un espace mesurable.

1. Pour toute fonction f : Ω → E, on définit la tribu engendrée par f σ(f) comme
étant la plus petite (au sens de l’inclusion) tribu de Ω telle que f soit mesurable.
Montrer que σ(f) est la tribu image-réciproque de E par f , i.e., σ(f) = {f−1(B) :
B ∈ E}.

2. Soit A ⊆ Ω. Montrer que σ(1A) = σ({A}).
3. Plus généralement, soit I un ensemble non vide, ((Ei, Ei))i∈I et, pour chaque i ∈ I,

fi : Ω→ Ei une fonction quelconque. La tribu engendrée par la famille (fi)i∈I est
définie comme la plus petite tribu de Ω telle que chaque fi, i ∈ I, soit mesurable.
On la note σ ((fi)i∈I). Vérifier que

σ ((fi)i∈I) = σ

(⋃
i∈I

σ(fi)

)
.

Exercice 11

1. Soit Ω un ensemble quelconque. Montrer que la tribu engendrée par les singletons
de Ω est l’ensemble des parties A de Ω telles que A ou sont complémentaire est au
plus dénombrable.

2. En déduire que la tribu discrète de IR n’est pas engendrée par les singletons de IR.

3. En déduire que, plus généralement, si Ω n’est pas au plus dénombrable, alors sa
tribu discrète n’est pas engendrée par les singletons de Ω.
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Exercice 12

Soit (E, E) un espace mesurable. Un élément A ∈ E est dit minimal si et seulement
s’il est non vide et si les seuls éléments de E inclus dans A sont ∅ et A lui-même.

1. Quels sont les éléments minimaux dans la tribu grossière ? Dans la tribu discrète
?

2. Si E = IR, quels sont les éléments minimaux de la tribu Borélienne ?

3. Pour tout A ∈ E , on considère l’application δA : E → IR telle que pour tout B ∈ E ,

δA(B) =

{
1 si B ∩ A 6= ∅
0 sinon .

Montrer que δA est une mesure de probabilité sur (E, E) si et seulement si A est
minimal.

4. Supposons la tribu E finie.
a) Montrer qu’elle est engendrée par ses éléments minimaux.
b) En déduire que le cardinal de E est nécessairement une puissance de deux.

* Exercice 13 Tribus vues comme des espaces vectoriels

Soit (E, E) un espace mesurable. On définit les opérations suivantes sur E :

• A+B = A∆B (différence symétrique), pour A,B ∈ E ;

• λA = A si λ = 1, λA = 0 si λ = 0, pour tout λ ∈ Z/2Z.

1. Vérifier que E , muni de ces deux opérations, a une structure d’espace vectoriel sur
le corps Z/2Z.

2. Montrer que la tribu E est finie si et seulement si elle est de dimension finie, vue
comme Z/2Z-espace vectoriel.

3. En déduire que si E est finie, alors son cardinal est une puissance de deux.

Exercice 14 Théorème de transfert

Soient (E, E) et (F,F) deux espaces mesurables, µ une mesure sur (E, E) et g : E → F
une fonction mesurable. On note ν = g#µ la mesure image de µ par g, i.e., la mesure sur
(F,F) définie par ν(B) = µ(g−1(B)), pour tout B ∈ F .

1. Vérifier que ν est bien une mesure sur (F,F).

2. Soit φ : F → IR une fonction mesurable.
a) Montrer que φ ∈ L1(ν) ⇐⇒ φ ◦ g ∈ L1(µ).
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b) Vérifier que dans ce cas,∫
E

φ(g(x)) dµ(x) =

∫
F

φ(y) dν(y).

3. Soit φ : F → IR+ une fonction mesurable positive. Montrer que∫
E

φ(g(x)) dµ(x) =

∫
F

φ(y) dν(y),

où on attribue la valeur infinie à toute intégrale d’une fonction mesurable positive
non intégrable.

Exercice 15

Soit (E, E) un espace mesurable et µ, ν deux mesures σ-finies sur (E, E). On suppose
que µ admet une densité par rapport à ν, que l’on note f . Montrer que :

1. Pour toute fonction mesurable φ : E → IR, φ ∈ L1(µ) ⇐⇒ φf ∈ L1(ν) et que
dans ce cas, ∫

E

φ(x) dµ(x) =

∫
E

φ(x)f(x) dν(x).

2. Pour toute fonction mesurable positive φ : E → IR,∫
E

φ(x) dµ(x) =

∫
E

φ(x)f(x) dν(x),

où on attribue la valeur infinie à toute intégrale d’une fonction mesurable positive
non intégrable.

2 Espaces de probabilités

2.1 Généralités

Exercice 16 Propriétés fondamentales

Soit (Ω,A, P ) un espace de probabilité. Montrer les propriétés suivantes.

1. Pour tout A,B ∈ A, A ∩B = ∅ ⇒ P (A ∪B) = P (A) + P (B).

2. Pour tout A,B ∈ A, P (A \B) = P (A)− P (A ∩B).

3. Pour tout A ∈ A, P (A{) = 1− P (A).

4. Pour tout A,B ∈ A, P (A ∪B) = P (A) + P (B)− P (A ∩B).

5. Pour tout A,B ∈ A, A ⊆ B ⇒ P (A) ≤ P (B).
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6. Pour tout A,B ∈ A, P (A ∪B) ≤ P (A) + P (B).

7. Pour tout A1, . . . , AN ∈ A (N ≥ 2), P
(⋃N

n=1An

)
≤
∑N

n=1 P (An).

8. Pour toute suite (An)n≥1 d’éléments de A, P
(⋃

n≥1An
)
≤
∑∞

n=1 P (An).

9. Pour tous B ∈ A, N ≥ 1 et A1, . . . , AN ∈ A tels que An∩Am = ∅ pour tous entiers
distincts m,n ∈ {1, . . . , N} et P (A1 ∪ . . . ∪ AN) = 1, P (B) =

∑N
i=1 P (B ∩ Ai).

10. Pour tout B ∈ A et toute suite (An)n≥1 d’éléments de A, telle que An ∩ Am = ∅
pour tous entiers distincts m,n ≥ 1 et P

(⋃
n≥1An

)
= 1, P (B) =

∑∞
i=1 P (B∩An).

11. Pour toute suite croissante (An)n≥1 d’éléments de A, P

(⋃
n≥1

An

)
= lim

n→∞
P (An).

12. Pour toute suite décroissante (An)n≥1 d’éléments de A, P

(⋂
n≥1

An

)
= lim

n→∞
P (An).

Exercice 17 Expériences aléatoires

1. Dans chacun des cas suivants, définir un espace de probabilité adapté à l’expérience
aléatoire décrite.

a) On lance une pièce équilibrée, et on observe sur quel côté la pièce tombe.
b) On lance une pièce équilibrée deux fois, et on observe sur quel côté la pièce

est tombé pour chaque lancé.
c) Une pièce équilibrée est lancée deux fois, mais on sait uniquement si la pièce

est tombé deux fois du même côté.
d) On observe le résultat du lancé d’un dé à 8 faces, dont la probabilité d’obtenir

une face est proportionnelle au numéro inscrit sur cette face.
e) On dispose de deux urnes: la première contient une boule rouge et deux boules

bleues, la seconde contient trois boules rouges et une boule bleue. On lance
une pièce équilibrée; si on obtient pile, on tire au hasard une boule dans la
première urne, sinon, on tire au hasard une boule dans la seconde urne. Les
boules d’une même couleur sont indiscernables.

2. Pour chacun des cas précédents, on s’intéresse aux propositions suivantes. Pour
chacune d’elles, déterminer si elle correspond à un événement (i.e., un élément de
la tribu) et, le cas échéant, déterminer cet événement (i.e., l’élément de la tribu
associé) et calculer sa probabilité.

a) “La pièce tombe sur pile ou face” ; “La pièce tombe sur face”
b) “La pièce est tombée sur deux côtés différents” ; “La pièce est tombée sur pile

au premier lancer”
c) “La pièce est tombée sur deux côtés différents” ; “La pièce est tombée sur pile

au second lancer”
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d) “Le résultat du dé est 2” ; “Le résultat du dé est pair”
e) “La pièce est tombée sur pile” ; “Une boule rouge est tirée” ; “La boule bleue

qui avait été déposée en premier dans l’urne a été tirée”.

Exercice 18 Formule de Poincaré

Soit (Ω,A, P ) un espace de probabilité.

1. Montrer que pour tous A,B,C ∈ A,

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C).

2. Généralisation: A l’aide d’une récurrence, montrer que pour tout entier n ≥ 1 et
pour toute famille d’événements A1, A2, . . . , An,

P

(
n⋃
i=1

Ai

)
=

n∑
k=1

(−1)k+1
∑

I∈Pk({1,2,...,n})

P

(⋂
i∈I

Ai

)
,

où, pour tout k = 1, . . . , n, Pk({1, 2, . . . , n}) est l’ensemble des parties de {1, 2, . . . , n}
qui continennent exactement k éléments.

Exercice 19 Espaces de probabilités finis

Soit Ω un ensemble fini non vide, qu’on note Ω = {a1, . . . , an} où n = #Ω.

1. Soient p1, . . . , pn des nombres réels quelconques, et soit P : P(Ω)→ IR l’application
définie par

P (A) =
n∑
k=1

pk1ak∈A =
∑

1≤k≤n:ak∈A

pk,

pour toute partie A de Ω. Montrer que P est une probabilité sur (Ω,P(Ω)) si et

seulement si p1, . . . , pn ≥ 0 et
n∑
k=1

pk = 1.

2. Vérifier que toute probabilité P sur (Ω,P(Ω)) est entièrement déterminée par les
nombres pk = P ({ak}), k = 1, . . . , n, qui sont positifs et dont la somme vaut 1.

Exercice 20 Limites inférieure et supérieure d’événements

Soit (Ω,A, P ) un espace de probabilité et soit (An)n≥1 une suite d’événements. On
définit les limites inférieure et supérieure de la suite (An)n≥1 de la manière suivante:

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
p=n

Ap
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et

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
p=n

Ap.

1. Vérifier que lim inf
n→∞

An est l’ensemble des ω ∈ Ω qui sont dans tous les An à partir

d’un certain rang et que lim sup
n→∞

An est l’ensemble des ω ∈ Ω qui sont dans une

infinité de An.

2. Montrer que lim inf
n→∞

An et lim sup
n→∞

An sont dans A.

3. Prouver que lim inf
n→∞

An ⊆ lim sup
n→∞

An.

4. Montrer la suite d’inégalités suivante:

P
(

lim inf
n→∞

An

)
≤ lim inf

n→∞
P (An) ≤ lim sup

n→∞
P (An) ≤ P

(
lim sup
n→∞

An

)
.

2.2 Probabilités conditionnelles et événements indépendants

Exercice 21 Formule des probabilités totales

1. Soit (Ω,A, P ) un espace de probabilité et soient B1, B2, . . . , Bn ∈ A formant une
partition de Ω, tels que P (Bk) > 0 pour tout k = 1, . . . , n. Soit A ∈ A tel que
P (A) 6= 0. Montrer que, pour tout k = 1, . . . , n,

P (Bk|A) =
P (A|Bk)P (Bk)∑n
i=1 P (A|Bi)P (Bi)

.

2. On considère n urnes, et on suppose que pour k = 1, . . . , n, la k-ème urne contient
k boules rouges et n + 1− k boules vertes. On lance un dé équilibré à n faces, et
on tire au hasard une boule dans l’urne portant le numéro obtenu au lancé du dé.
Soit k ∈ {1, . . . , n} un nombre fixé. Sachant qu’on a tiré une boule verte, quelle
est la probabilíte que le résultat du dé fût k ?

Exercice 22

Soit (Ω,A, P ) un espace de probabilité. Soient A,B ∈ A.

1. Montrer que A ⊥⊥ B ⇐⇒ A{ ⊥⊥ B ⇐⇒ A ⊥⊥ B{ ⇐⇒ A{ ⊥⊥ B{.

2. En déduire que A et B sont indépendants si et seulement si les tribus engendrées
par A et B, i.e., σ({A}) et σ({B}), sont indépendantes.

3. Supposons que P (A), P (B) > 0. Montrer qu’alors, si A et B sont disjoints, ils ne
peuvent pas être indépendants.
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Exercice 23

1. Soit (Ω,A, P ) un espace de probabilité et (An)n≥1 une suite d’événements. Montrer
l’équivalence des assertions suivantes :

(i) Les événements An, pour n ≥ 1, sont indépendants.

(ii) Pour tout ensemble I ⊆ IN∗ fini,

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P (Ai)

(iii) Pour tout n ≥ 1, A1, . . . , An sont indépendants.

2. Soit (E, E) un espace mesurable et (En)n≥1 une suite de sous-tribus de E . Soit P
une probabilité sur (E, E). Montrer l’équivalence des assertions suivantes :

(i) Les tribus En, pour n ≥ 1, sont indépendantes.

(ii) Pour tout n ≥ 1, E1, . . . , En sont indépendantes.

* Exercice 24

Soit (Ω,A, P ) un espace de probabilité. Pour toutA ∈ A, on noteA1 = A etA−1 = A{.

1. Soient n ≥ 1 et A1, . . . , An des événements. Montrer l’équivalence des assertions
suivantes :

(i) Les événements A1, . . . , An sont indépendants.

(ii) Les tribus σ(A1), . . . , σ(An) sont indépendantes.

(iii) Pour tout (ε1, . . . , εn) ∈ {−1, 1}n,

P

(
n⋂
i=1

Aεii

)
=

n∏
i=1

P (Aεii )

(iv) Pour tous sous-ensembles disjoints I et J de {1, . . . , n},
⋂
i∈I

Ai et
⋂
j∈J

Aj sont

indépendants.

(v) Pour tous sous-ensembles disjoints I et J de {1, . . . , n},
⋃
i∈I

Ai et
⋃
j∈J

Aj sont

indépendants.

2. Soit (An)n≥1 une suite d’événements. Montrer l’équivalence des assertions suivantes
(on pourra utiliser des résultats de l’exercice 23) :

(i) Les événements A1, A2, . . . sont indépendants.
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(ii) Les tribus σ(A1), σ(A2), . . . sont indépendantes.

(iii) Pour tout n ≥ 1 et pour tout (ε1, . . . , εn) ∈ {−1, 1}n,

P

(
n⋂
i=1

Aεii

)
=

n∏
i=1

P (Aεii )

(iv) Pour tous sous-ensembles disjoints I et J deN∗,
⋂
i∈I

Ai et
⋂
j∈J

Aj sont indépendants.

(v) Pour tous sous-ensembles disjoints I et J deN∗,
⋃
i∈I

Ai et
⋃
j∈J

Aj sont indépendants.

Exercice 25

Soit (Ω,A, P ) un espace de probabilité.

1. Soient n ≥ 1 et A1, . . . , An des événements indépendants. En utilisant la formule
de Poincaré (Exercice 18), montrer que A{

1, . . . , A
{
n sont indépendants.

2. Généraliser le résultat de la question précédente à une suite d’événements indépendants.

Exercice 26 Indépendance et indépendance mutuelle

1. On lance un dé non pipé deux fois, et on considère les événements suivants:

• A: “le résultat du second dé est 1, 2 ou 5”

• B: “le résultat du second dé est 4, 5 ou 6”

• C: “la somme des résultats des deux dés vaut 9”

a) Montrer que P (A ∩B ∩ C) = P (A)P (B)P (C).
b) Montrer que P (A ∩B) 6= P (A)P (B), P (A ∩ C) 6= P (A)P (C) et P (B ∩ C) 6=
P (B)P (C). Que pouvez-vous en conclure ?

2. On considère cette fois-ci les événements suivants.

• A: “le résultat du premier dé est pair”

• B: “le résultat du second dé est pair”

• C: “la somme des résultats des deux dés est impaire”

Montrer que A,B,C sont deux à deux indépendants et que pourtant, ils ne sont
pas mutuellement indépendants.

Exercice 27 L’indépendance dépend du choix de la probabilité !

Soit Ω = {0, 1} × {0, 1}, muni de sa tribu discrète. On définit les deux mesures de
probabilité P et Q de la manière suivante :

P ({(0, 0)}) = P ({(0, 1)}) = P ({(1, 0)}) = 1/4
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et
Q({(0, 0)}) = 1/2, Q({(0, 1)}) = 1/6, Q({(1, 0)}) = 1/6

(on vérifiera que ces égalités suffisent à définir P et Q de manière complète). Considérons
les événements A = {(0, 0), (0, 1)} et B = {(0, 0), (1, 0)}. Montrer que A et B sont
indépendants dans l’espace de probabilité (Ω,P(Ω), P ), mais qu’ils ne le sont pas dans
(Ω,P(Ω), Q).

Exercice 28 Indépendance et indépendance conditionnelle

On considère le lancé de deux dés non pipés et on définit les évéments suivants:

• A: “le résultat du premier dé est pair”

• B: “le résultat du second dé est impair”

• C: “la somme des résultats des deux dés est paire”

Montrer que A et B sont indépendants, mais qu’ils ne sont pas indépendants condition-
nellement à C (i.e., pour la probabilité conditionnelle sachant C).

Exercice 29 Lemme de Borel-Cantelli

Soit (Ω,A, P ) un espace de probabilité, et A1, A2, . . . une suite d’événements. On
rappelle les deux définitions suivantes:

lim inf
n→∞

An =
∞⋃
n=1

∞⋂
p=n

Ap

et

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
p=n

Ap.

1. Montrer que si
∞∑
n=1

P (An) < ∞, alors P (lim supn→∞An) = 0 (Première partie du

lemme de Borel-Cantelli).

2. On suppose, dans cette question que les événements A1, A2, . . . sont indépendants.

a) Montrer que

(
lim sup
n→∞

An

){

= lim inf
n→∞

A{
n.

b) Montrer que pour toute suite d’événements B1, B2, . . .,

P (lim inf
n→∞

Bn) = lim
n→∞

[
lim
q→∞

P

(
q⋂

k=n

Bk

)]
.
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c) En déduire que

P (lim inf
n→∞

A{
n) = lim

n→∞

[
lim
q→∞

q∏
k=n

(1− P (Ak))

]
.

Indice: On pourra utiliser le fait que A1, A2, . . . sont mutuellement indépendants
si et seulement si A{

1, A
{
2, . . . sont mutuellement indépendants.

d) On rappelle que pour tout x ∈ IR, e−x ≥ 1−x. En déduire que si
∞∑
n=1

P (An) =

∞, alors P (lim supn→∞An) = 1 (Deuxième partie du lemme de Borel-
Cantelli).

3. Application (expérience de pensée) : si on place un chimpanzé d’espérance de
vie infinie devant un ordinateur et que celui-ci tape sur le clavier de manière
complètement aléatoire sans jamais s’arrêter, montrer que dans la suite infinie des
caractères obtenus, on pourra lire, une infinité de fois, A La Recherche du Temps
Perdu, sans aucune faute d’orthographe.

Exercice 30 Une application du lemme de Borel-Cantelli

On souhaite montrer qu’il n’existe pas de probabilité P sur (N∗,P(N∗)) telle que pour
tout entier n ≥ 1, P (An) = 1/n, où An est l’ensemble des multiples de n. Raisonnons par
l’absurde, et supposons l’existence d’une telle probabilité P .

1. Montrer que pour tout couple (p, q) de nombres premiers distincts, Ap et Aq sont
nécessairement indépendants.

2. Soit (pk)k≥1 la suite croissante des nombres premiers. Montrer que la série de terme
général P (Apk), k ≥ 1, est divergente.

3. Conclure en utilisant le lemme de Borel-Cantelli.

Exercice 31 Loi du zéro/un de Kolmogorov

Soit (Ω,A, P ) un espace de probabilité et (An)n≥1 une suite de sous-tribus de A,
supposées mutuellement indépendantes. On définit la tribu asymptotique comme

A∞ =
⋂
n≥1

σ

(⋃
p≥n

Ap

)
.

1. Vérifier que A∞ est une sous-tribu de A.

2. Soit (An)n≥1 une suite d’éléments deA telle que pour tout n ≥ 1, An ∈ An. Vérifier
que lim supn→∞An et lim infn→∞An sont des éléments de la tribu asymptotique
(cf. exercice 20 pour la définition des limites inférieure et supérieure d’une suite
d’ensembles).
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3. Soit A ∈ A∞ et n ≥ 1. On va montrer que pour tout B ∈ An, A ⊥⊥ B.

a) Vérifier que A ∈ σ
(⋃

p≥n+1Ap
)

.

b) En déduire, avec une justification très précise, que A ⊥⊥ B (on pourra utiliser
les résultats de l’exercice 9).

4. Déduire des questions précédentes que tout élément de la tribu asymptotique est
indépendant de lui-même.

5. En déduire la loi du zéro/un de Kolmogorov : tout élément de la tribu asymptotique
est de probabilité 0 ou 1.

6. Donner un contre-exemple à la loi du zéro/un de Kolmogorov, lorsqu’on enlève
l’hypothèse d’indépendance des sous-tribus.

7. A l’aide de la loi du zéro/un de Kolmogorov, proposer une preuve alternative de la
deuxième partie du lemme de Bortel-Cantelli : si (An)n≥1 est une suite d’éléments
indépendants de A, alors P (lim supn≥1An) ∈ {0, 1} et cette probabilité vaut 0 si
et seulement si la série des P (An), n ≥ 1 est convergente (cf. exercice 29).

3 Variables aléatoires et lois de probabilités

Sauf mention contraire, toutes les variables aléatoires sont supposées définies sur un même
espace de probabilité (Ω,A, P ), même si celui-ci n’est pas mentionné.

3.1 Généralités

Exercice 32

Soit (E, E) un espace mesurable quelconque et Q une probabilité sur (E, E). Montrer
qu’il existe toujours une variable aléatoire à valeurs dans E dont la loi est Q, quitte
à pouvoir choisir l’espace de probabilité sur lequel on définit la variable aléatoire (cet
exercice valide la légitimité des énoncés commençant par “Soit X une variable aléatoire
de loi...”).

Exercice 33

Vérifier que deux variables aléatoires qui sont égales presque sûrement ont la même
loi. La réciproque est-elle vraie ?

Exercice 34

Soit X une variable aléatoire à valeurs dans un espace mesurable (E, E). Supposons
que X ∈ A presque sûrement, où A ∈ E . Soit f : A→ F une fonction mesurable à valeurs
dans un espace mesurable (F,F).
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1. Montrer qu’on peut définir une variable aléatoire Y à valeurs dans F , telle que
pour tout ω ∈ X−1(A), Y (ω) = f(X(ω)).

2. Vérifier que si Y et Z sont deux variables aléatoires dans F satisfaisant Y (ω) =
Z(ω) = f(X(ω)) pour tout ω ∈ X−1(A), alors Y = Z presque sûrement. On
s’autorise, abusivement, à noter de telles variables aléatoires “f(X)”, même si
f(X) n’est pas définie sur tout Ω.

3. Déduire des questions précédentes qu’on peut bien définir :
a) 1/X, lorsque X ∼ N (0, 1) ;
b) log(1/X) lorsque X ∼ U([0, 1]) ;
c)
√
X lorsque X est une variable aléatoire réelle de loi exponentielle.

* Exercice 35 Support d’une loi

Soit E un espace métrique muni de sa tribu borélienne B(E). Soit Q une probabilité
sur (E,B(E)). On appelle le support de Q l’ensemble des x ∈ E tels que pour tout ε > 0,
Q(B(x, ε)) > 0, où B(x, ε) est la boule fermée de centre x et de rayon ε.

1. Montrer que le support S de Q est fermé et non vide.

2. En déduire que S ∈ B(E).

3. Supposons E séparable et complet. On cherche à montrer que Q(S{) = 0. Sup-
posons, par l’absurde, que Q(S{) > 0.

a) Montrer que S{ possède un sous-ensemble dénombrable dense, qu’on notera
G.

b) Vérifier que S{ ⊆
⋃
x∈GB(x, 1).

c) Montrer qu’il existe alors x1 ∈ G tel que Q(B(x1, 1)) > 0.
d) Avec un raisonnement similaire, montrer qu’on peut construire une suite

(xn)n≥1 d’éléments deG telle que pour tout n ≥ 1, B(xn+1, 2
−(n+1)) ⊆ B(xn, 2

−n)
et Q(B(xn, 2

−n) > 0.
e) Vérifier que la suite (xn)n≥1 est de Cauchy.
f) Obtenir une contradiction et conclure.

4. Déterminer le support des lois suivantes sur (IR,B(IR)) :
a) U([0, 1])
b) U((0, 1])
c) N (0, 1)
d) Exp(1)
e) Ber(1/3)
f) B(8, 2/3)
g) U({1, 2, 3, 4, 5, 6}).
h) La loi admettant une densité par rapport à la mesure de Lebesgue, donnée

par f : x ∈ IR 7→ 2x10<x<1.
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3.2 Lois et variables aléatoires discrètes

Exercice 36

Soit E un ensemble au plus dénombrable et soitX une variable aléatoire dans (E,P(E)).
Montrer que X admet une densité par rapport à la mesure de comptage de E, donnée
par sa fonction de masse, i.e., la fonction x ∈ E 7→ P (X = x).

Exercice 37

Soit E un ensemble au plus dénombrable, muni de sa tribu discrète. Soit f : E → IR

une fonction positive telle que
∑
x∈E

f(x) = 1. Montrer qu’il existe une unique loi de

probabilité sur E dont f est la fonction de masse.

Exercice 38

Soit X une variable aléatoire dans un espace mesurable (E, E) dont la tribu E contient
tous les singletons. On rappelle qu’une variable aléatoire X dans E est dite discrète si et
seulement s’il existe un sous-ensemble au plus dénombrable F de E tel que P (X ∈ F ) = 1.
Montrer que X est discrète si et seulement si P (X ∈ A) = 1, où A est l’ensemble des
atomes de X (on vérifiera que A ∈ E).

Exercice 39 Exemples de lois discrètes

1. On lance deux dés équilibrés de manière indépendante, et on note X le résultat
du premier dé, Y le résultat du second dé. Montrer que la loi de (X, Y ) est la loi
uniforme sur {1, . . . , 6}2.

2. Si E est un ensemble fini non vide, on rappelle que la loi uniforme sur E (muni
de sa tribu discrète) est la probabilité dont la densité par rapport à la mesure de
comptage de E est constante.

a) Quelle est la valeur de cette constante ?
b) Est-il possible de définir la loi uniforme sur un ensemble infini dénombrable ?

3. Soit E un ensemble fini non vide, et soit (X, Y ) une variable aléatoire dans E ×E
(muni de sa tribu discrète) de loi uniforme sur E × E. Montrer que X et Y ont
toutes deux la loi uniforme sur E.

4. Soit E = {1, . . . , 6} et soit (X, Y ) une variable aléatoire sur E × E (muni de
sa tribu discrète) telle que, pour tout (x, y) ∈ {1, . . . , 6}2, P ((X, Y ) = (x, y)) est
proportionnelle à x+ y. Calculer les lois de X, Y et X + Y .

Exercice 40 Fonctions de masse

Soit (E, E) un espace mesurable dont E contient tous les singletons.

1. Soit f : E → IR une fonction satisfaisant les propriétés suivantes :
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• Pour tout x ∈ E, f(x) ≥ 0 ;

• L’ensemble des x ∈ E tels que f(x) > 0 est au plus dénombrable ;

•
∑
x∈E

f(x) = 1 (la somme ayant un sens grâce à la propriété précédente).

a) Vérifier que f est mesurable.
b) Démontrer qu’il existe une unique loi discrète sur (E, E) dont f est la fonction

de masse.

2. Soit X une variable aléatoire à valeurs dans E et f sa fonction de masse.
a) Montrer que f est mesurable, positive, que {x ∈ E : f(x) > 0} est au plus

dénombrable et que
∑

x∈E f(x) ≤ 1.
b) Montrer que X est discrète si et seulement si

∑
x∈IR f(x) = 1.

Exercice 41

1. Soient (E, E) et (F,F) deux espaces mesurables. Soit f : E → F une fonction
mesurable et X une variable aléatoire à valeurs dans E. Vérifier que si X est
discrète, alors f(X) l’est aussi.

2. Soient X1, . . . , Xn des variables aléatoires discrètes, à valeurs dans des espaces
éventuellement différents. Montrer que (X1, . . . , Xn) est une variable aléatoire
discrète.

Exercice 42

Vérifier que U({0, 1}) = Ber(1/2).

3.3 Densités

Exercice 43 Unicité presque partout de la densité

Soit (E, E) un espace mesurable quelconque et Q une probabilité sur (E, E). Supposons
que Q admet deux densités f et g par rapport à ν. Montrer qu’alors, f(x) = g(x) pour
ν-presque tout x ∈ E.

Exercice 44

Soit (E, E) un espace mesurable et ν une mesure sur (E, E). Soit f : E → IR une
fonction positive et mesurable, satisfaisant

∫
E
f(x) dν(x) = 1. Pour tout B ∈ E , on pose

Q(B) =
∫
B
f(x) dν(x).

1. Vérifier que Q est une probabilité sur (E, E) et qu’elle admet une densité par
rapport à ν, donnée par f .

2. En déduire qu’il existe une variable aléatoire à valeurs dans E de densité f par
rapport à ν.
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Exercice 45

Soit T > 0 un réel fixé. Soit X une variable aléatoire réelle de loi exponentielle de
paramètre 1. Soit Y = min(X,T ).

1. La variable aléatoire Y admet-elle une densité par rapport à la mesure de Lebesgue
?

2. Montrer que Y admet une densité par rapport à λ + δT , où λ est la mesure de
Lebesgue de IR et déterminer cette densité.

Exercice 46

Montrer que toute variable aléatoire admet une densité par rapport à une certaine
mesure.

3.4 Lois marginales, lois jointes et variables aléatoires indépendantes

Exercice 47

Soient X et Y deux variables aléatoires définies sur un même espace de probabilité
et à valeurs dans deux espaces mesurables éventuellement différents. Supposons X et Y
discrètes. Montrer que X et Y sont indépendantes si et seulement si pour tout atome x
de X et tout atome y de Y , P (X = x, Y = y) = P (X = x)P (Y = y).

Exercice 48

Soient X et Y deux variables aléatoires de loi de Bernoulli. Montrer qu’elles sont
indépendantes si et seulement si P (X = 1, Y = 1) = P (X = 1)P (Y = 1).

* Exercice 49 Existence de variables de Bernoulli indépendantes (1)

1. Soit Ω = {0, 1}, muni de sa tribu discrète A.
a) Existe-t-il une probablité P sur (Ω,A) et une variable aléatoire X définie sur

(Ω,A, P ) telles que la loi de X soit la loi de Bernoulli de paramètre 1/2 ?
b) Peut-on construire une probablité P sur (Ω,A) et deux variables aléatoires X

et Y sur (Ω,A, P ) telles que X et Y sont i.i.d de loi de Bernoulli de paramètre
1/2 ?

2. Soit n ≥ 2 un entier quelconque. Dans cette question, nous allons démontrer qu’on
peut construire n variables aléatoires réelles i.i.d de loi de Bernoulli de paramètre
1/2, dès lors qu’on définit ces variables aléatoires sur espace mesurable (Ω,A) assez
riche. Soit Ω = {0, 1}n, muni de sa tribu discrète A. Pour i = 1, . . . , n, on pose
Xi : Ω→ IR la fonction qui à chaque élément de Ω associe sa i-ème coordonnée.

a) Vérifier que Xi est bien mesurable, quel que soit i = 1, . . . , n.
b) Soit P la mesure de probabilité uniforme sur (Ω,A). Montrer que X1, . . . , Xn

sont alors des variables aléatoires i.i.d de loi de Bernoulli de paramètre 1/2.
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c) Adapter la construction précédente au cas où on souhaite construire n variables
aléatoires i.i.d de loi de Bernoulli de paramètre p ∈ [0, 1].

* Exercice 50 Existence de variables de Bernoulli indépendantes (2)

Dans cet exercice, on propose la construction d’une suite (infinie) de variables aléatoires
i.i.d de loi de Bernoulli de paramètre 1/2.

Soit Ω = [0, 1] muni de sa tribu borélienne, notée A, et soit P la mesure de probabilité
uniforme sur (Ω,A). Pour tout entier n ≥ 1, soit Xn : Ω → IR la fonction qui à tout

ω ∈ [0, 1] associe sa n-ème décimale en base 2. Autrement dit, si on écrit ω =
∞∑
i=1

ai
2i

, où

(ai)i≥1 est une suite d’éléments de {0, 1} qui ne stationne pas à 1, alors Xn(ω) = an (on
pourra vérifier que la suite des ai, appelée décomposition dyadique de ω, est unique, pour
chaque ω ∈ [0, 1]).

1. Vérifier que pour tout n ≥ 1, Xn est une variable aléatoire.

2. Vérifier que pour tout n ≥ 1, Xn suit la loi de Bernoulli de paramètre p.

3. Vérifier que X1, X2, . . . sont indépendantes (Indication: on vérifiera que pour tout
n ≥ 1, X1, . . . , Xn sont indépendantes).

* Exercice 51 Existence de variables aléatoires indépendantes

Soit (E, E) un espace mesurable quelconque et Q une mesure de probabilité sur (E, E).
Le but de l’exercice est de montrer que pour tout entier n ≥ 2, il existe des variables
aléatoires X1, . . . , Xn à valeurs dans E, i.i.d, de loi Q.

Soit n ≥ 1 un entier fixé. Posons Ω = En, muni de la tribu produit A = E⊗n et de la
mesure de probabilité produit P = Q⊗n. Pour chaque i = 1, . . . , n, soit Xi : Ω → E la
fonction qui à chaque élément de Ω lui associe sa i-ème composante.

1. Vérifier que X1, . . . , Xn sont des variables aléatoires.

2. Montrer qu’elles sont i.i.d, de loi Q.

3. Adapter la construction précédente pour montrer l’existence de variables aléatoires
X1, . . . , Xn dans E, indépendantes, de lois Q1, . . . , Qn, où les Qi, i = 1, . . . , n, sont
des mesures de probabilités données sur (E, E).
Remarque: on peut aussi construire des suites (infinies) de variables aléatoires i.i.d
de loi donnée dans un espace mesurable (E, E), mais une telle construction requiert
des outils plus élaborés, notamment, le théorème de Carathéodory.

Exercice 52 Couplages

Soient (E1, E1), . . . , (En, En) des espaces mesurables, où n ≥ 2 est un entier fixé. Pour
chaque i = 1, . . . , n, soit Qi une loi de probabilités sur (Ei, Ei). Un couplage de Q1, . . . , Qn

est une loi sur (E1 × . . . × En, E1 ⊗ . . . ⊗ En) dont les lois marginales sont Q1, . . . , Qn.

19



Autrement dit, un couplage de Q1, . . . , Qn est la loi jointe de n’importe quel vecteur
aléatoire (X1, . . . , Xn) satisfaisant Xi ∼ Qi, i = 1, . . . , n.

1. Montrer qu’il existe toujours au moins un couplage de Q1, . . . , Qn. Est-il unique
en général ?

2. Supposons que Qi = δai , i = 1, . . . , n, où a1 ∈ E1, . . . , an ∈ En sont fixés. Vérifier
qu’il existe un unique couplage de Q1, . . . , Qn.

3. Soient p, q ∈ [0, 1]. Décrire l’ensemble des couplages de Ber(p) et Ber(q).

Exercice 53 Transport optimal

Soient E et F deux ensembles finis non vides, de cardinaux respectifs m et n, et munis
de leurs tribus discrètes. Dans la suite, on notera a1, . . . , am les éléments de E et b1, . . . , bn
les éléments de F .

Soient P et Q deux lois de probabilités sur E et F respectivement. Un couplage de P
et Q est une loi sur le produit E × F dont les marginales sont données par P et Q, i.e.,
la loi de n’importe quel vecteur aléatoire (X, Y ), où X est une variable aléatoire dans E
de loi P et Y est une variable aléatoire dans F de loi Q.

1. Rappeler pourquoi P et Q sont entièrement déterminées par la donnée de m + n
nombres réels positifs p1, . . . , pm, q1, . . . , qn tels que p1 + . . .+pm = q1 + . . .+qn = 1.

2. Soit Π un couplage de P et Q et soit M ∈ IRm×n la matrice dont les coefficients
sont donnés par Mi,j = Π({(ai, bj)}), i = 1, . . . ,m, j = 1, . . . , n.

a) Vérifier que Π est entièrement déterminée par la matrice Mi,j.
b) Vérifier que M1n = q et M>1m = p, où 1m = (1, . . . , 1) ∈ IRm, 1n =

(1, . . . , 1) ∈ IRn, p = (p1, . . . , pm) et q = (q1, . . . , qn).
c) Réciproquement, vérifier que toute matrice M ∈ IRm×n satisfaisant M1n = q,
M>1m = p et Mi,j ≥ 0 pour tout i = 1, . . . ,m et tout j = 1, . . . , n, permet de
représenter un couplage de P et Q.

3. Pour tout i = 1, . . . ,m et j = 1, . . . , n, fixons un nombre réel ci,j > 0, pouvant être
interprété comme un coût pour effectuer une opération entre ai et bj (par exemple,
E est un ensemble d’usines et F est un ensemble de distributeurs, et ci,j est un coût
de transport depuis l’usine ai vers le distributeur bj). On souhaite minimiser le
coût moyen associé à un couplage Π de P et Q, c’est-à-dire à trouver un couple de
variables aléatoires X et Y , de lois respectives P et Q, dont la loi jointe permet de
minimiser le coût moyen défini comme C(Π) =

∑m
i=1

∑n
j=1 ci,jP (X = ai, Y = bj)

(par exemple, un bien donné est produit en proportions données par p1, . . . , pm
dans chacune des usines, et chaque distributeur doit en recevoir une proportion
donnée par q1, . . . , qn).

a) Vérifier qu’on peut écrire C(Π) comme Tr(C>M), où M est la matrice associée
au couplage Π comme défini dans la question précédente et C ∈ IRm×n est une
matrice qu’on déterminera.
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b) Montrer que les solutions au problème sont les solutions du problème d’optimisation
linéaire suivant:

min
M∈IRm×n


Tr(CM)

s.c. M1n = q,

M>1m = p,

Mi,j ≥ 0,∀i = 1, . . . ,m, j = 1, . . . , n.

* Exercice 54 Transport optimal et distance en variation totale

Soit (E, E) un espace mesurable. Etant données deux probabilités P etQ sur (E, E), on
définit la distance en variation totale entre P etQ par la quantité d(P,Q) = supA∈E |P (A)−
Q(A)|.

1. Vérifier que d définit une distance sur l’ensemble des probabilités sur (E, E).

2. Soient P et Q deux probabilités sur (E, E).
a) Vérifier qu’il existe une mesure σ-finie µ sur (E, E) par rapport à laquelle P

et Q admettent toutes deux des densités, qu’on notera p et q dans la suite.
b) Montrer que d(P,Q) = 1

2

∫
E
|p(x) − q(x)| dν(x) (on pourra procéder en mon-

trant une double inégalité ; pour l’une d’elles, on pourra introduire l’ensemble
A0 = {x ∈ E : p(x) ≥ q(x)}, en justifiant qu’il est bien dans E).

3. On supposera dans la suite que la diagonale D = {(x, x) = x ∈ E} est un élément
de la tribu produit E ⊗ E (proposer un exemple dans lequel ce n’est pas le cas).
Fixons de nouveau deux probabilités P et Q sur (E, E). Le but de cette question
est de montrer qu’on peut aussi écrire la distance en variation totale entre P et Q
comme la solution d’un problème de transport optimal :

d(P,Q) = inf
Π∈C(P,Q)

Π(D{) = inf
X∼P,Y∼Q

P(X 6= Y )

où C(P,Q) est l’ensemble des couplages de P et Q, i.e., l’ensemble des probabilités
sur (E×E, E ⊗E) dont les marginales sont données par P et Q, et où le deuxième
infimum est calculé sur l’ensemble des variables aléatoires X et Y à valeurs dans
E définies sur un même espace de probabilité (Ω,A,P), de lois respectives P et Q
(vérifier que {ω ∈ Ω : X(ω) 6= Y (ω)} ∈ A).
Soient X et Y deux variables aléatoires quelconques dans E de lois respectives P
et Q.

a) Vérifier que pour tout A ∈ E ,

P(X 6= Y ) ≥ P (A)−Q(A).

b) En déduire que quelle que soit la loi jointe de X et Y , P(X 6= Y ) ≥ d(P,Q).
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c) Soit α = d(P,Q) et posons A = {x ∈ E : p(x) ≥ q(x)}.
i – Vérifier que α ∈ [0, 1].

ii – Si α = 0, vérifier que P = Q et que le résultat recherché est vrai.
iii – Si α = 1, vérifier que le résultat recherché est vrai, en prenant n’importe

quel couplage de P et Q.
iv – Supposons α /∈ {0, 1}. Vérifier que la fonction f(x) = min(p(x), q(x))/(1−

α) est une densité sur (E, E) par rapport à ν (où on rappelle que p et q
sont les densités respectives de P et Q par rapport à une mesure ν).

v – Soient g(x) = p(x)−q(x)
α

1x∈A et h(x) = q(x)−p(x)
α

1x/∈A, pour tout x ∈ E.
Montrer que g et h sont des densités par rapport à la mesure ν.

vi – Soient U, V,W,Z quatre variables aléatoires indépendantes, telles que:
U, V,W sont des variables aléatoires dans E admettant pour densités
respectives, par rapport à ν, f, g et h, et Z suit la loi de Bernoulli de
paramètre α. Soient X = (1 − Z)U + ZV et Y = (1 − Z)U + ZW .
Montrer que X et Y ont pour lois P et Q respectivement et que P (X 6=
Y ) = d(P,Q).

3.5 Calcul de lois

Exercice 55

Soient X1, . . . , Xn des variables aléatoires i.i.d de loi de Bernoulli de paramètre p ∈
[0, 1], où n ≥ 1 est un entier. Montrer que X1 + . . .+Xn ∼ B(n, p).

* Exercice 56

Soit X une variable aléatoire réelle définie sur un espace de probabilité (Ω,A, P ).
Supposons que X soit de loi binomiale de paramètre (n, p), où n ≥ 1 et p ∈ [0, 1]. Existe-
t-il nécessairement n variables aléatoires réelles i.i.d X1, . . . , Xn, définies sur (Ω,A, P ), de
loi de Bernoulli de paramètre p, telles que X = X1 + . . . + Xn (on pourra se ramener à
l’exercice 49) ?

Exercice 57

Soient X et Y deux variables aléatoires réelles indépendantes. On suppose que X ∈ IN
et Y ∈ IN presque sûrement.

1. Vérifier que X + Y ∈ IN presque sûrement.

2. Soient f et g les fonctions de masse de X et Y respectivement. Montrer que la
fonction de masse de X + Y , notée h, satisfait :

h(n) =
n∑
k=0

f(k)g(n− k), ∀n ∈ IN.
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3. Déduire de la question précédente que la somme de deux variables aléatoires réelles
indépendantes de lois de Poisson (de paramètres éventuellement distincts) suit une
loi de Poisson.

4. Généraliser le résultat précédent au cas d’un nombre fini quelconque de variables
aléatoires indépendantes de lois de Poisson.

Exercice 58 Difféomorphismes (1)

Les fonctions suivantes permettent-elles de définir un C1-difféomorphisme à valeurs
dans un ouvert de leur ensemble d’arrivée ? Le cas échéant, calculer le déterminant du
Jacobien de la fonction réciproque, sur le bon domaine.

1. φ(x, y) = (x, y) pour x, y ∈ IR;

2. φ(x, y) = (x, x+ y) pour x, y ∈ IR;

3. φ(x, y) = (x, x+ y) pour x, y ∈ (0,∞);

4. φ(x, y) = (x, x+ y) pour x, y ∈ (0, 1);

5. φ(x, y) = (x+ y, x− y) pour x, y ∈ (0, 1);

6. φ(x, y) = (x3, y3) pour x, y ∈ IR;

7. φ(x, y) = (x3, y3) pour x, y ∈ (0,∞);

8. φ(x, y) = (x+ y, x/(x+ y)) pour x, y ∈ (0,∞);

9. φ(x, y) = (x+ y, x/(x+ y)) pour x, y ∈ (1,∞);

10. φ(x, y) = (x, x/(x+ y)) pour x, y ∈ (1,∞);

11. φ(x, y) = (x/(x+ y), y/(x+ y)) pour x, y ∈ (0,∞);

12. φ(x) = Ax pour x ∈ IRd, où A ∈ IRd×d est une matrice inversible;

13. φ(x) = Ax pour x ∈ (0,∞)d, où A ∈ IRd×d est une matrice inversible.

Exercice 59 Difféomorphismes (2)

Dans chacune des questions suivantes, on définit une fonction f et on demande de
proposer une fonction h telle que le couple (f, h) définit un C1-difféomorphisme à valeurs
dans un ouvert à déterminer.

1. f(x, y) = x+ y pour x, y ∈ IR2;

2. f(x, y) = x+ y pour x, y > 0;

3. f(x, y) = xy pour x, y > 0;

4. f(x, y) = 1/(x+ y) pour x, y > 0;

5. f(x, y) = 1/(x+ y) pour x, y > 1;

6. f(x, y) = x/(x+ y) pour x, y > 0;

7. f(x, y) = x2 + y2 pour x, y ∈ IR∗;

8. f(x, y) = x+ y pour x, y ∈ IRd (d ≥ 1);
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9. f(x, y) = x+ y pour x, y ∈ (0,∞)d;

10. f(x) = Ax pour x ∈ IRd, où A ∈ IRp×d est une matrice de rang p, où 1 ≤ p ≤ d.

Exercice 60

Soit X = (X1, X2) un vecteur aléatoire réel dans IR2. On suppose que X admet une
densité par rapport à la mesure produit λ ⊗ µ, où λ est la mesure de Lebesgue de IR
et µ est la mesure de comptage de IN∗, et que cette densité est donnée par f(x1, x2) =
Ce−2x1(x2+1)/x2! si x1 ≥ 0 et x2 ∈ IN∗, f(x1, x2) = 0 sinon, où C > 0 est un nombre fixé.

1. Déterminer la valeur de C.

2. Vérifier que X2 ∈ IN∗ presque sûrement.

3. Déterminer la fonction de masse de X2.

4. Rappeler pourquoi X1 admet une densité par rapport à la mesure de Lebesgue, et
déterminer celle-ci.

Exercice 61

Soit (X, Y ) un vecteur aléatoire réel de loi uniforme dans {1, 2, 3, 4, 5, 6}2. Déterminer
les lois de X et de Y .

Exercice 62

Soit (X, Y ) un vecteur aléatoire réel de loi uniforme dans [a, b]× [c, d], où a, b, c, d sont
des nombres réels satisfaisant a < b et c < d. On rappelle que pour tout compact K
d’intérieur non vide de IR2, la loi uniforme sur K est la probabilité P sur (IR2,B(IR2))

satisfaisant P (A) = Vol(A∩K)
Vol(K)

, pour tout A ∈ B(IR2).

1. Déterminer les lois de X et de Y .

2. Montrer que X ⊥⊥ Y .

3. Montrer que X+Y admet une densité par rapport à la mesure de Lebesgue, qu’on
déterminera.

Exercice 63

Soit (X, Y ) un vecteur aléatoire réel de loi uniforme sur la boule euclidienne unité de
IR2. Montrer que X + Y admet une densité par rapport à la mesure de Lebesgue, qu’on
déterminera.

Exercice 64

Soient X et Y deux variables aléatoires réelles indépendantes. On suppose que X suit
la loi exponentielle de paramètre 1 et que Y suit la loi de Poisson de paramètre 1. Montrer
que X + Y admet une densité par rapport à la mesure de Lebesgue.

Exercice 65

24



Soit X ∼ N2(0, I2). Montrer que ‖X‖2 suit la loi exponentielle de paramètre 1/2, où
‖ · ‖ est la norme euclidienne de IR2 (on pourra utiliser un changement de variable en
coordonnées polaires rigoureusement justifié).

Exercice 66

Soit µ ∈ IRd et Σ ∈ IRd×d une matrice symétrique définie positive, où d ≥ 1. Soit X
un vecteur aléatoire de taille d de loi Nd(µ,Σ). Pour tout i = 1, . . . , d, vérifier que Xi, la
i-ème coordonnée de X, suit la loi N (µi,Σi,i).

Exercice 67 Exercice préliminaire sur les vecteurs gaussiens

Soit X ∼ Nd(µ,Σ), où d ≥ 1, µ ∈ IRd et Σ ∈ IRd×d est une matrice symétrique définie
positive. Soit p ≤ d un entier strictement positif et A ∈ IRp×d une matrice de rang plein
(i.e., de rang p). On cherche à démontrer que AX ∼ Np(Aµ,AΣA>), à l’aide de la formule
de changement de variable.

1. Supposons que p = d. Vérifier que la fonction φ : IRd → IRd donnée par φ(x) = Ax,
pour tout x ∈ IRd, est un C1-difféomorphisme et conclure.

2. Supposons à présent que p < d.
a) Montrer qu’on peut définir une matrice B ∈ IRd×d qui est inversible et dont

les p premières lignes sont données par la matrice A (on pourra se contenter
de montrer l’existence d’une telle matrice, sans la construire explicitement).

b) Vérifier que la fonction ψ : IRd → IRd définie par ψ(x) = Bx, x ∈ IRd, est un
C1-difféomorphisme.

c) Vérifier que BX = (X1, X2), où X1 = AX et X2 est un vecteur aléatoire dans
IRd−p.

d) En conclure que AX admet une densité par rapport à la mesure de Lebesgue,
et conclure.

e) Retrouver le résultat de l’exercice précédent.

Exercice 68

Soit X = (X1, X2) un vecteur aléatoire réel suivant la loi uniforme sur {(x, y) ∈ IN2 :
x ≥ 0, y ≥ 0, x+ y ≤ 2}. Déterminer les lois marginales de X1 et de X2.

Exercice 69

1. Soit X = (X1, X2) un vecteur aléatoire réel de loi uniforme sur l’ensemble T ={
(x, y) ∈ IR2 : x ≥ 0, y ≥ 0,

x

a
+
y

b
≤ 1
}

, où a, b > 0 sont fixés. Montrer que X1 et

X2 admettent des densités par rapport à la mesure de Lebesgue, qu’on déterminera.

2. Soit X = (X1, . . . , Xd) un vecteur aléatoire réel de loi uniforme sur l’ensemble
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T =

{
(x1, . . . , xd) ∈ (IR+)d :

x1

a1

+ . . .+
xd
ad
≤ 1

}
, où a1, . . . , ad sont des nombres

strictement positifs fixés. Pour chaque j = 1, . . . , d, vérifier que Xj admet une
densité par rapport à la mesure de Lebesgue, et déterminer celle-ci.

Exercice 70

Soit X une variable exponentielle de paramètre λ > 0. Montrer que X2 et
√
X sont

continues et déterminer leurs densités.

Exercice 71

Soit X une variable aléatoire de Cauchy, i.e., une variable aléatoire réelle admet-
tant pour densité, par rapport à la mesure de Lebesgue, la fonction définie par f(x) =

1
π(1+x2)

, x ∈ IR. Montrer que X et 1/X ont la même loi.

Exercice 72

1. Soient X et Y deux variables aléatoires réelles continues, de densités respectives f
et g. On suppose que X et Y sont indépendantes. Montrer que X + Y admet une
densité, donnée par la convolution de f et g, i.e., la fonction f ? g définie par

f ? g(x) =

∫
IR

f(y)g(x− y) dy, ∀x ∈ IR.

2. Soient X et Y deux variables aléatoires indépendantes de lois respectives N (µ1, σ
2
1)

et N (µ2, σ
2
2), où µ1, µ2 ∈ IR et σ2

1, σ
2
2 > 0. Déduire de la question précédente la loi

de X + Y .

3. Soit n ∈ IN∗ et soient X1, . . . , Xn des variables aléatoires indépendantes de lois
respectives N (µi, σ

2
i ), i = 1, . . . , n. Déduire des questions précédentes la loi de

X1 + . . .+Xn.

4. Pour tous k ∈ IN∗ et λ > 0, on définit la loi Gamma de paramètres k et λ comme
la loi continue sur IR de densité :

fk,λ(x) =
λk

(k − 1)!
xk−1e−λx1x>0, x ∈ IR.

a) Montrer que la loi exponentielle de paramètre λ > 0 est une loi Gamma dont
on déterminera les paramètres.

b) Démontrer que la somme de deux variables aléatoires i.i.d de loi exponentielle
de paramètre λ > 0 suit une loi Gamma, dont on déterminera les paramètres,
en fonction de λ.

c) Soit n ∈ IN∗. Démontrer que la somme de n variables aléatoires i.i.d de loi
exponentielle de paramètre λ > 0 suit une loi Gamma, dont on déterminera
les paramètres, en fonction de λ.
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Exercice 73 Lois Gamma

Pour tous réels α > 0 λ > 0, on définit la loi Gamma de paramètres α et λ, notée
Γ(α, λ), comme la mesure de probabilité sur (IR,B(IR)) admettant une densité par rapport
à la mesure de Lebesgue, donnée par :

fα,λ(x) =
λα

Γ(α)
xα−1e−λx1x>0, x ∈ IR

où Γ est la fonction Gamma d’Euler (Γ(t) =
∫∞

0
zt−1e−z dz pour tout réel t > 0).

1. Soient α, λ > 0. Montrer que si X est une variable aléatoire de loi Γ(α, λ), alors
pour tout t > 0, tX ∼ Γ(α, λ/t).

2. Soient X1, . . . , Xn des variables aléatoires réelles indépendantes telles que Xi ∼
Γ(αi, λ), i = 1, . . . , n où n ∈ IN∗, α1, . . . , αn > 0 et λ > 0. Montrer que X1 + . . .+
Xn ∼ Γ(α1 + . . .+ αn, λ).

3. Soit X ∼ N (0, 1). Montrer que X2 ∼ Γ(1/2, 1/2).

4. Soient X1, . . . , Xn des variables aléatoires i.i.d de loi normale centrée réduite.
Déduire des questions précédentes que X2

1 + . . . + X2
n ∼ Γ(n/2, 1/2). On appelle

aussi cette loi la loi du chi-2 à n degrés de liberté et on la note χ2
n.

5. En particulier, déduire que si X est un vecteur aléatoire de taille n ≥ 1 suivant la
loi Nn(0, In), alors ‖X‖2

2 ∼ χ2
n.

Exercice 74

Soit Ω = {1, 2, 3, 4, 5, 6}2, A = P(Ω) et P la loi uniforme sur Ω. Pour tout ω =
(ω1, ω2) ∈ Ω, on note X(ω) = ω1 et X(ω) = ω2. Montrer que X et Y sont deux variables
aléatoires réelles indépendantes et de même loi.

Exercice 75

1. Soit (X, Y ) un vecteur aléatoire uniformément distribué dans le disque {(x, y) ∈
IR2 : x2 + y2 ≤ 1}. Montrer que X et Y sont identiquement distribuées, continues,
et calculer leur densité. Sont-elles indépendantes ?

2. Soit (X, Y, Z) un vecteur aléatoire uniformément distribué dans la boule {(x, y, z) ∈
IR3 : x2 + y2 + z2 ≤ 1}. Montrer que X, Y et Z sont identiquement distribuées,
continues, et calculer leur densité. Sont-elles indépendantes ?

3. Soit (X1, . . . , Xd) un vecteur aléatoire uniformément distribué dans la boule eu-
clidienne unité de IRd. Pour tout k = 1, . . . , d, déterminer la densité du vecteur
aléatoire (X1, . . . , Xk).

Exercice 76
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Soient X1, . . . , Xn des variables aléatoires gaussiennes indépendantes. Montrer que
pour tous réels a1, . . . , an, a1Xn+ . . .+anXn suit une loi normale, dont on déterminera les
paramètres en fonction des paramètres respectifs des Xi, i = 1, . . . , n (on pourra raisonner
par récurrence).

Exercice 77

Soient X et Y deux variables aléatoires i.i.d de loi exponentielle de paramètre λ > 0.

Déterminer les lois de
X

X + Y
et

Y

X + Y
. Ces deux variables sont-elles indépendantes ?

Exercice 78

Soient X et Y deux variables aléatoires indépendantes, de lois respectives N (0, σ2) et
N (0, τ 2), où σ2 et τ 2 sont des réels strictement positifs. Déterminer (après avoir justifié
son existence) la densité de X/Y par rapport à la mesure de Lebesgue.

Exercice 79 Projection d’une loi uniforme

Soit X un vecteur aléatoire de loi uniforme sur la boule euclidienne de centre 0 et de
rayon

√
d, dans IRd.

1. Déterminer la fonction de répartition de X1, la première coordonnée de X.

2. En déduire la densité de X1 par rapport à la mesure de Lebesgue. On note fd :
IR→ IR cette densité.

3. Montrer que pour tout t ∈ IR fixé,

fd(t) −−−→
d→∞

e−t
2/2

√
2π

.

Autrement dit, la loi de X1 s’approche (dans un sens qui sera rendu précis dans
l’exercice 224), en très grande dimension, de la loi normale centrée réduite.

Exercice 80 Lois images

Soient (E, E) et (F,F) deux espaces mesurables, P une mesure de probabilité sur
(E, E) et f : E → F une fonction mesurable. On note f#P la mesure image de P par f ,
i.e., pour tout B ∈ F , (f#P )(B) = P (f−1(B)).

1. Vérifier que f#P est une mesure de probabilité sur (F,F).

2. Soit X une variable aléatoire définie sur un espace de probabilité (Ω,A, P ), à
valeurs dans un espace mesurable (E, E). Vérifier que la loi PX deX est simplement
donnée par X#P .

3. Déterminer f#P dans les cas suivants (lorsqu’on ne reconnâıtra pas une loi usuelle,
on déterminera la densité de f#P par rapport à une mesure de référence sur un
espace mesurable approprié) :
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a) P = U([0, 1]) et f(x) = 2x, ∀x ∈ IR.
b) P = U([0, 1]) et f(x) = 1− x, ∀x ∈ IR.
c) P = U([0, 1]) et f(x) = ax+ b, ∀x ∈ IR, où a > 0 et b ∈ IR.
d) P = N (0, 1) et f(x) = ax+ b, ∀x ∈ IR, où a, b ∈ IR.
e) P = Exp(λ) et f(x) = ax, ∀x ∈ IR, où λ, a > 0.
f) P = N (0, 1) et f(x) = 1/x, ∀x ∈ IR∗.
g) P = U([0, 1]) et f(x) = xn, ∀x ∈ IR, où n ∈ IN.
h) P = U([0, 1]) et f(x) =

√
x, ∀x ∈ IR+.

i) P = N (0, 1) et f(x) = xn, ∀x ∈ IR, où n ∈ IN.
j) P = N2(0, I2) et f(x, y) = x+ y, ∀(x, y) ∈ IR2.
k) P = Nd(µ,Σ) et f(x) = Ax + b, ∀x ∈ IRd, où µ ∈ IRd, Σ est une matrice

symétrique réelle, semi-définie positive, A ∈ IRp×d, b ∈ IRp, d, p ∈ IN∗.
l) P = N2(0, I2) et f(x, y) = x2 + y2, ∀x, y ∈ IR.

Exercice 81

Dans chaque question, on vous donne une fonction, qui dépend de certains paramètres,
et on vous dit que cette fonction est une densité par rapport à la mesure indiquée. En
faisant le moins de calculs possible (voire, dans certains cas, aucun calcul, ni même de
tête), reconnâıtre la loi correspondante, en indiquant juste le domaine dans lequel doivent
se trouver les paramètres.

1. f(x) = eax+b1x≥0, ∀x ∈ IR, avec la mesure de Lebesgue de IR.

2. f(x) = eax
2+bx+c, ∀x ∈ IR, avec la mesure de Lebesgue de IR.

3. f(x) = eax+b

x!
, ∀x ∈ IN, avec la mesure de comptage de IN.

4. f(x) = Cax, ∀x ∈ IN, avec la mesure de comptage de IN.

5. f(x) = Cax+3

x!
, ∀x ∈ IN, avec la mesure de comptage de IN.

6. f(x) = C13≤x≤32, ∀x ∈ IN, avec la mesure de comptage de IN.

7. f(x) = C
ax2+bx+c

, ∀x ∈ IR, avec la mesure de Lebesgue de IR.

8. f(x) = Cex
>Ax+b>x, ∀x ∈ IRd (A est une matrice et b est un vecteur), avec la

mesure de Lebesgue de IR.

9. f(x) = ax+ b, ∀x ∈ {0, 1}, avec la mesure de comptage de {0, 1}.
10. f(x) = Cax, ∀x ∈ {0, 1}, avec la mesure de comptage de {0, 1}.

3.6 Fonctions de répartition

Exercice 82 Rappels de cours

Soit X une variable aléatoire réelle. On appelle la fonction de répartition de X la
fonction F : IR→ IR définie par F (x) = P (X ≤ x), pour x ∈ IR.
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1. Déterminer, et tracer le graphe de la fonction de répartition de X lorsque X suit
la loi :

a) de Bernoulli de paramètre p ∈ [0, 1] ;
b) exponentielle de paramètre λ > 0 :
c) uniforme sur [0, 1].

2. Montrer que F est croissante, lim
x→−∞

F (x) = 0 et lim
x→∞

F (x) = 1.

3. Soit x ∈ IR.
a) Montrer que lim

y→x,y<x
F (y) = P (X < x) et lim

y→x,y>x
F (y) = F (x).

b) En déduire que F est càdlàg, i.e., F est continue à droite et admet une limite
à gauche en tout point.

c) En déduire aussi que F est continue en x si et seulement si x n’est pas un
atome de X.

4. Montrer que F détermine complètement la loi de X.

Exercice 83 Loi du min, loi du max

1. Soit n ≥ 1 et X1, . . . , Xn des variables aléatoires réelles i.i.d. Exprimer les fonctions
de répartition de min(X1, . . . , Xn) puis de max(X1, . . . , Xn).

2. Supposons que la loi desXi soit la loi exponentielle de paramètre λ > 0. Déterminer
la loi de min(X1, . . . , Xn).

3. Déterminer la densité du maximum de n variables aléatoires i.i.d uniformément
distribuées sur [0, 1], par rapport à la mesure de Lebesgue.

* Exercice 84 Caractérisation des fonctions de répartition

Soit F : IR → IR une fonction croissante, càdlàg, telle que lim
x→−∞

F (x) = 0 et

lim
x→∞

F (x) = 1. Le but de cet exercice est de montrer qu’il existe une variable aléatoire

réelle dont F est la fonction de répartition.

1. Pour tout t ∈]0, 1[, on définit F−(t) = inf{x ∈ IR : F (x) ≥ t}.
a) Montrer que pour tout x ∈ IR et pour tout t ∈]0, 1[,

F (x) ≥ t ⇐⇒ x ≥ F−(t).

b) Si F est strictement croissante et continue, comment appelle-t-on la fonction
F− ?

Dans la suite, on admet que F− est une fonction mesurable (on pourra éventuellement le
démontrer).
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2. Soit U une variable uniforme sur [0, 1]. On définit

X =

{
F−(U) si 0 < U < 1

0 sinon.

a) Montrer que X est une variable aléatoire.
b) Montrer que F est la fonction de répartition de X.

* Exercice 85 Fonctions absolument continues

Une fonction F : IR → IR est dite absolument continue s’il existe une fonction
mesurable f : IR→ IR intégrable sur tout compact par rapport à la mesure de Lebesgue,
telle que pour tous a, b ∈ IR avec a ≤ b,

F (b)− F (a) =

∫ b

a

f(x) dx.

Dans ce cas, on dit que la fonction f est une dérivée au sens faible de F .

1. Montrer que si F : IR→ IR est absolument continue, et si f et g sont deux dérivées
au sens faible de F , alors f = g λ-presque partout, où λ est la mesure de Lebesgue
de IR. On s’autorise donc à parler, par abus de langage, de la dérivée au sens faible
de F .

2. Montrer que si F et G sont deux fonctions absolument continues, alors pour tous
λ, µ ∈ IR, λF + µG est absolument continue.

3. Montrer que si F et G sont deux fonctions absolument continues, alors FG est
absolument continue (on pourra montrer que Fg + fG est une dérivée au sens
faible de FG, où f et g sont des dérivées au sens faible de F et G respectivement,
en justifiant rigoureusement tous les calculs : notamment, justifier que Fg + fG
est bien mesurable et intégrable sur tout compact).

4. Vérifier qu’une fonction absolument continue est nécessairement continue sur IR.

5. Proposer un exemple de fonction continue qui n’est pas absolument continue.

6. Montrer qu’une fonction de classe C1 sur IR est absolument continue et que sa
dérivée est une dérivée au sens faible.

7. Proposer un exemple de fonction absolument continue qui n’est pas dérivable sur
IR.

8. Montrer qu’une fonction continue et C1 par morceaux est absolument continue (on
rappelle qu’une fonction F : IR → IR est dite C1 par morceaux si et seulement
si pour tous a, b ∈ IR avec a < b, il existe un entier n ≥ 1 et des nombres a =
a0 < a1 < . . . < an−1 < an = b tels que sur chaque (ai−1, ai), F cöıncide avec une
fonction définie et C1 sur [ai−1, ai]).

9. Proposer un exemple de fonction absolument continue qui n’est pas C1 par morceaux.
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10. Montrer que toute fonction lipschitzienne est absolument continue.

11. Proposer un exemple de fonction absolument continue qui n’est pas lipshitzienne.

12. Soit X une variable aléatoire réelle et soit F sa fonction de répartition.
a) Vérifier que si X admet une densité par rapport à la mesure de Lebesgue,

alors F est absolument continue et sa dérivée au sens faible est la densité de
X.

b) Réciproquement, montrer que si F est absolument continue, alors X admet
une densité par rapport à la mesure de Lebesgue, donnée par la dérivée au
sens faible de F .

Exercice 86 Définition et propriétés des quantiles

Soit X une variable aléatoire réelle et α ∈ (0, 1). On appelle quantile d’ordre α de X
tout nombre réel q satisfaisant P (X ≤ q) ≥ α et P (X ≥ q) ≥ 1 − α. Lorsque α = 1/2,
on parle de médiane.

1. Déterminer l’ensemble des quantiles d’ordre α (α ∈ (0, 1) est fixé) de X lorsque X
suit la loi:

a) Bernoulli de paramètre p ∈ [0, 1] (il faudra distinguer plusieurs cas suivant la
valeur de p);

b) Uniforme sur [0, 1];
c) Unforme sur [a, b] où a < b sont deux nombres réels;
d) Exponentielle de paramètre λ ∈ (0, 1);
e) Géométrique de paramètre p ∈ (0, 1).

2. Montrer que si la loi de X est symétrique (i.e., −X et X ont la même loi), alors 0
est une médiane de X. Est-ce nécessairement la seule ?

3. Montrer que l’ensemble des quantiles d’ordre α de X est toujours un intervalle
fermé, borné et non vide.

4. Soit I l’ensemble des quantiles d’ordre α de X. Montrer que P (X ∈ I̊) = 0, où I̊
désigne l’intérieur de I.

5. Supposons que X admet une densité par rapport à la mesure de Lebesgue, et que
cette densité est strictement positive sur IR.

a) Vérifier que la fonction de répartition de X est continue et strictement crois-
sante sur IR.

b) En déduire que le dans ce cas-là, le quantile d’ordre α de X est unique, et
qu’il est donné par F−1(α), où F−1 est la bijection réciproque de la fonction
de répartition F de X.

6. Supposons que X suit la loi normale centrée réduite. On note Φ sa fonction de
répartition.

a) Vérifier que Φ est une bijection de IR dans l’intervalle ouvert (0, 1).
b) Montrer que pour tout t ∈ IR, Φ(t) = 1− Φ(−t).
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c) Pour tout β ∈ (0, 1), on note qβ l’unique quantile d’ordre β de X. Déduire
des questions précédentes que q1−α = −qα.

d) Déduire que si α ∈ (0, 1), alors P (|X| > q1−α/2) = α.
e) Soit Y une variable aléatoire de loi normale de paramètre (µ, σ2), où µ ∈ IR

et σ2 > 0. Déterminer le quantile d’ordre α de Y en fonction des quantiles de
X, de µ et de σ.

Exercice 87

Soit n ∈ IN∗ et soient X1, . . . , Xn des variables aléatoires réelles i.i.d Soit N le nombre
de ces variables qui prennent des valeurs strictement positives, i.e.,

N = card ({i = 1, . . . , n : Xi > 0}) .

Déterminer la loi de N à l’aide de la fonction de répartition de X1.

Exercice 88

Soient X, Y, Z des variables aléatoires i.i.d de loi uniforme sur [0, 1]. On note M la
variable aléatoire obtenue en prenant la valeur médiane entre X, Y et Z. Admet-elle une
densité par rapport à la mesure de Lebesgue ? Le cas échéant, la déterminer.
Indication : calculer la fonction de répartition de M .

Exercice 89

Soient X1, . . . , Xn des variables aléatoires réelles indépendantes, de lois exponentielles
de paramètres λ1, . . . , λn > 0, respectivement. Montrer que min(X1, . . . , Xn) suit une loi
exponentielle dont on déterminera le paramètre.

Exercice 90 Une loi sans mémoire

Soit X une variable aléatoire réelle positive satisfaisant:

• ∀t ≥ 0, P (X > t) > 0;

• ∀s, t ≥ 0, P (X > t+ s|X > t) = P (X > s).

1. Donner une interprétation à la seconde hypothèse.

2. Soit F la fonction de répartition de X, et soit G = 1− F . Montrer que pour tout
s, t ≥ 0,

G(t+ s) = G(t)G(s).

3. Posons a = G(1).
a) Déterminer G(0).
b) Déterminer la valeur de G(n), pour tout entier n ≥ 0, en fonction de a.
c) En déduire la valeur de G(r), pour tout rationnel r ≥ 0.
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d) En déduire la valeur de G(t), pour tout réel t ≥ 0, en fonction de a (attention
: on ne sait pas si G est continue - en revanche, on sait qu’elle est continue
à droite).

e) Montrer que a > 0.
f) Déterminer la valeur de G(t) pour tout réel t < 0.

4. En déduire F , ainsi que la loi de X.

4 Espérances

4.1 Espérance de variables aléatoires

Exercice 91 Calcul d’espérances

Calculer l’espérance et la variance, lorsqu’elles existent (justifier leurs existences ou
non-existences), d’une variable aléatoire réelle suivant la loi:

1. Bernoulli de paramètre p ∈ [0, 1];

2. Binomiale de paramètres n ∈ IN∗ et p ∈ [0, 1];

3. Poisson de paramètre λ > 0;

4. Géométrique sur IN∗ de paramètre p ∈]0, 1[;

5. Exponentielle de paramètre λ > 0;

6. Uniforme sur [a, b], où a < b;

7. Gaussienne de paramètres µ ∈ IR et σ2 > 0;

8. Cauchy de paramètres m ∈ IR et a > 0 (i.e., admettant la densité donnée par
f(x) = 1

π
a

(x−m)2+a2 , x ∈ IR, par rapport à la mesure de Lebesgue).

Exercice 92

Vérifier les propriétés suivantes de l’espérance :

• Soit X un vecteur aléatoire réel dans IRd (d ≥ 1) dont on note X1, . . . , Xd les
coordonnées. Alors X est intégrable si et seulement si chaque Xj, j = 1, . . . , d est
intégrable, et le cas échéant, E[X] est le vecteur dont les coordonnées sont les E[Xj],
j = 1, . . . , n.

• Linéarité : E[λX+µY ] = λE[X]+µE[Y ], où X, Y sont des vecteurs aléatoires réels
intégrables, et λ, µ ∈ IR.
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• Positivité : si X est une variable aléatoire réelle telle que X ≥ 0 p.s., alors E[X] ≥ 0.
Si, de plus, E[X] = 0, alors X = 0 p.s.

• Inégalité triangulaire (1) : si X est une variable aléatoire réelle intégrable, alors
|E[X]| ≤ E[|X|].

• Inégalité triangulaire (2) : si X est un vecteur aléatoire réel intégrable, alors
‖E[X]‖ ≤ E[‖X‖].

Exercice 93 Conséquences matricielles de la linéarité de l’espérance

1. Vérifier que si X est un vecteur aléatoire réel de taille d intégrable et A ∈ IRp×d

(p, d ≥ 1), alors AX est intégrable et E[AX] = AE[X].

2. En particulier, vérifier que pour tout vecteur u ∈ IRd, sous les hypothèses de la
question précédente, on a : E[u>X] = u>E[X].

3. On appelle matrice aléatoire réelle de taille p × q, où p, q ∈ IN∗, une matrice de
taille p × q dont chaque coefficient est une variable aléatoire réelle. Une telle
matrice aléatoire M est dite intégrable dès lors que chacun de ses coefficients est
intégrable. On définit alors son espérance E[M ] comme la matrice de taille p × q
dont les coefficients sont les espérances des coefficients respectifs de M . Vérifier
qu’alors, pour toutes matrices A ∈ IRm×p et B ∈ IRq×n sont des matrices données
(avec m,n ∈ IN∗), AMB est une matrice aléatoire de taille m × n intégrable, et
E[AMB] = AE[M ]B.

4. Vérifier que si M est une matrice aléatoire intégrable, alors sa transposée M> l’est
aussi et E[M>] = E[M ]>.

5. Soit M une matrice aléatoire de taille p × p. Vérifier que Tr(M) est une variable
aléatoire réelle intégrable et que E[Tr(M)] = Tr(E[M ]).

6. Plus généralement, montrer que si M est une matrice aléatoire de taille p × q,
intégrable, et que φ : IRp×q → IRm×n est une application linéaire, où p, q,m, n ∈ IN∗,
alors φ(M) est une matrice aléatoire intégrable et E[φ(M)] = φ(E[M ]) (on vérifiera
par ailleurs que toutes les questions précédentes étaient des cas particuliers de cette
question).

Exercice 94

Soit n ∈ IN∗ et X1, . . . , Xn des variables aléatoires i.i.d de loi uniforme sur [0, 1].

1. Déterminer l’espérance et la variance de min(X1, . . . , Xn).

2. Sans faire de calculs supplémentaires, en déduire l’espérance et la variance de
max(X1, . . . , Xn) (Indication : vérifier que 1 − X1, . . . , 1 − Xn sont i.i.d de loi
uniforme sur [0, 1]).
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Exercice 95

Soit (Ω,A, P ) un espace de probabilité est A ∈ A. Soit X = 1A.

1. Vérifier que X est bien une variable aléatoire réelle. Quelle est sa loi ?

2. Vérifier que E[X] = P (A).

* Exercice 96 Une preuve alternative de la formule de Poincaré

Soit (Ω,A, P ) un espace de probabilité, n ∈ IN∗ et A1, . . . , An ∈ A.

1. Vérifier (sans récurrence) que

1⋃n
i=1 Ai

=
n∑
k=1

(−1)k+1
∑

I∈Pk({1,2,...,n})

1⋂
i∈I Ai

,

où, pour tout k = 1, . . . , n, Pk({1, 2, . . . , n}) est l’ensemble des parties de {1, 2, . . . , n}
qui continennent exactement k éléments.

2. En prenant l’espérance, en déduire la formule de Poincaré (cf. exercice 18).

4.2 Moments de variables aléatoires

Exercice 97

Soit X une variable aléatoire réelle et p ≥ 1. Montrer que X admet un moment d’ordre
p si et seulement si X − a admet un moment d’ordre p, quel que soit a ∈ IR.

Exercice 98

Soit X une variable aléatoire réelle. Dans chacun de ces cas, calculer E[|X|k], pour tout
entier k ≥ 1, et commenter sur la manière dont cette quantité évolue avec k, notamment
lorsque k →∞.

1. X ∼ Ber(p), où p ∈ [0, 1] ;

2. X ∼ Exp(λ), où λ > 0 ;

3. X ∼ U([0, 1]) ;

4. X ∼ U([−1, 1]) ;

5. X ∼ U([0, 2]) ;

6. X ∼ N (0, 1) (on établira une formule de récurrence).

Exercice 99

Soit X une variable aléatoire réelle et positive presque sûrement.
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1. Montrer que pour tout k ∈ IN∗,

E[Xk] = k

∫ ∞
0

tkP (X > t) dt

(les deux membres de l’égalité pouvant être infinis).

2. Plus généralement, montrer que pour toute fonction dérivable f : IR+ → IR, f(X)
est intégrable si et seulement si la fonction t ∈ IR+ 7→ f ′(t)P (X > t) est intégrable
par rapport à la mesure de Lebesgue, et le cas échéant,

E[f(X)] = f(0) +

∫ ∞
0

f ′(t)P (X > t) dt.

Exercice 100

Soit X une variable aléatoire réelle, positive presque.

1. Montrer que si E[Xk] ≤ 1 pour tout k ∈ IN∗, alors X ≤ 1 presque sûrement (on
pourra utiliser les résultats de l’exercice précédent).

2. En déduire queX est bornée presque sûrement si et seulement si la suite (E[Xk]1/k)k≥1

est bornée.

Exercice 101 Définition de la covariance au-delà des v.a. de carré intégrable

1. Vérifier que si X est une variable aléatoire réelle intégrable et Y est une variable
aléatoire réelle bornée presque sûrement, alors on peut définir la covariance de X
et Y .

2. A partir de la question précédente, si X est une variable aléatoire réelle intégrable,
déterminer cov(X, 1).

3. Soient p, q > 1 des réels conjugués, i.e., satisfaisant 1
p

+ 1
q

= 1. Montrer que si

X ∈ Lp(P ) et Y ∈ Lq(P ), alors on peut définir la covariance de X et de Y .

Exercice 102 Une formule alternative pour la (co)variance

1. Soient X et Y deux variables aléatoires réelles de carré intégrable. Montrer que

cov(X, Y ) =
1

2
E[(X −X ′)(Y − Y ′)]

où (X ′, Y ′) est un vecteur aléatoire indépendant de (X, Y ) et de même loi que
(X, Y ).

2. Conclure qu’en particulier, pour toute variable aléatoire réelleX de carré intégrable,

Var(X) =
1

2
E[(X −X ′)2],

où X ′ est une variable aléatoire indépendante de X et de même loi que X.
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Exercice 103

Soit X un vecteur aléatoire réel de taille d ≥ 1. On note X1, . . . , Xd les coordonnées
de X. Soit ‖ · ‖ une norme quelconque sur IRd.

1. Montrer que la variable aléatoire réelle ‖X‖ est intégrable si et seulement si pour
tout k = 1, . . . , d, Xk est intégrable (X est alors intégrable).

2. Montrer que ‖X‖ est de carré intégrable si et seulement si pour tout k = 1, . . . , d,
Xk est de carré intégrable (X est alors de carré intégrable).

Exercice 104 Matrices de variance-covariance

Soit X un vecteur aléatoire réel de taille d ≥ 1 de carré intégrable. On rappelle que
la matrice de variance-covariance de X est la matrice Σ ∈ IRd×d dont les coefficients sont
donnés par les covariances cov(Xi, Xj), 1 ≤ i, j ≤ d, où X1, . . . , Xd sont les coordonnées
de X.

1. Montrer que la matrice aléatoire XX> est intégrable (cf. exercice 93).

2. Vérifier que Σ = E[XX>]− E[X]E[X]> = E[(X − µ)(X − µ)>], où µ = E[X].

3. En déduire que E[XX>] = Σ + µµ>.

4. Soit X ′ une variable aléatoire de même loi que X et indépendante de X. Montrer
que Σ = 1

2
E[(X −X ′)(X −X ′)>].

5. Montrer que pour toute matrice A ∈ IRp×d, où p ≥ 1, le vecteur aléatoire AX est
de carré intégrable et que sa matrice de variance-covariance est donnée par AΣA>.

6. En particulier, vérifier que pour tout vecteur u ∈ IRd, Var(u>X) = u>Σu.

7. En déduire que Σ est une matrice symétrique semi-définie positive.

8. Montrer que si Σ n’est pas inversible, alors il existe un hyperplan affine H de IRd

tel que X ∈ H presque sûrement.

9. En particulier, déduire que si Σ n’est pas inversible, alors X n’admet pas de densité
par raport à la mesure de Lebesgue de IRd. La réciproque est-elle vraie ?

10. Montrer que E[‖X‖2
2] = ‖E[X]‖2

2 + Tr(Σ).

11. Plus généralement, montrer que pour toute matrice A ∈ IRp×d, où p ≥ 1,

E[‖AX‖2
2] = ‖Aµ‖2

2 + Tr(AΣA>)

(on pourra utiliser les résultats de l’exercice 93, en remarquant pour commencer
que ‖AX‖2

2 = Tr(AXX>A>)).

Exercice 105 Matrices de covariance

Soient X et Y deux vecteurs aléatoires réels de tailles p, q ≥ 1 respectivement, de carré
intégrable.

1. Vérifier que la matrice aléatoire XY > est intégrable (cf. exercice 93).
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2. On définit la covariance de X et Y , qu’on note cov(X, Y ), comme la matrice de
taille p×q dont le coefficient (i, j) est donné par cov(Xi, Yj), pour tout i = 1, . . . , p
et j = 1, . . . , q.

a) Montrer que cov(X, Y ) = E[(X−E[X])(Y −E[Y ])>] = E[XY >]−E[X]E[Y ]>.

b) Montrer que pour toutes matrices A ∈ IRm×p et B ∈ IRq×n, où m,n ∈ IN∗,
cov(AX,BY ) = Acov(X, Y )B (on pourra utiliser les résultats de l’exercice 93).

Exercice 106 Moments de variables aléatoires complexes

Soit Z une variable aléatoire complexe.

1. Vérifier que la partie réelle et la partie imaginaire de Z sont des variables aléatoires
réelles. On les notera X et Y , respectivement.

2. Soit p ≥ 1. On dit que Z admet un moment d’ordre p si et seulement si la variable
aléatoire réelle |Z| admet un moment d’ordre p, où | · | désigne le module.

a) Vérifier que Z admet un moment d’ordre p si et seulement si X et Y admettent
un moment d’ordre p.

b) Supposons que Z admet un moment d’ordre 1. On définit alors son espérance
comme E[Z] = E[X] + iE[Y ]. Vérifier qu’alors |E[Z]| ≤ E[|Z|].

4.3 Espérances, convexité et inégalités

Exercice 107

Soit X une variable aléatoire réelle admettant un moment d’ordre 1. Montrer que si
|E[X]| = E[|X|], alors X est de signe constant presque sûrement.

Exercice 108

Soit Z une variable aléatoire complexe admettant un moment d’ordre 1 (cf. exer-
cice 106). Montrer que |E[Z]| ≤ E[|Z|] si et seulement s’il existe θ ∈ IR, tel que e−iθZ ∈ IR
presque sûrement (autrement dit, Z est d’argument presque sûrement constant).

Exercice 109

Soit X un vecteur aléatoire réel de taille d ≥ 1, intégrable. Montrer que ‖E[X]‖2 =
E[‖X‖2] si et seulement s’il existe un vecteur u ∈ IRd et une variable aléatoire réelle Z
tels que X = Zu presque sûrement.

* Exercice 110 Une preuve de l’inégalité Jensen

Soit X un vecteur aléatoire réel dans IRd (d ≥ 1) et f : IRd → IR une fonction convexe.
On suppose que X et f(X) sont intégrables.
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On note A l’ensemble des couples (u, t) ∈ IRd×IR tels que pour tout x ∈ IRd, u>x+t ≤
f(x).

1. Montrer que A 6= ∅.
2. Montrer que pour tout x ∈ IRd,

f(x) = sup{u>x+ t : (u, v) ∈ A}.

3. En déduire que E[f(X)] ≥ f(E[X]).

Exercice 111 Une seconde preuve de l’inégalité Jensen, et cas d’égalité

Soit X un vecteur aléatoire réel dans IRd (d ≥ 1) et f : IRd → IR une fonction convexe.
On suppose que X et f(X) sont intégrables et on pose m = E[X].

1. Montrer l’existence d’un vecteur u ∈ IRd tel que pour tout x ∈ IRd,

f(x) ≥ f(m) + u>(x−m)

(un tel vecteur u est appelé sous-gradient de f en m).

2. En déduire l’inégalité de Jensen.

3. Supposons f strictement convexe.
a) Montrer que pour tout x ∈ IRd \ {m},

f(x) > f(m) + u>(x−m).

b) En déduire que si E[f(X)] = f(E[X]), alors X = m p.s.
c) Soit X une variable aléatoire de loi exponentielle de paramètre λ > 0. Montrer

que E[X−1] > λ.

Exercice 112 Support convexe

Soit C ⊆ IRd un ensemble convexe et soit X une variable aléatoire dans IRd intégrable
telle que X ∈ C presque sûrement.

1. Montrer que si E[X] ∈ ∂C, alors X ∈ ∂C presque sûrement.

2. Montrer que si de plus E[X] est un point extrémal de C, alors X = E[X] presque
sûrement (on rappelle qu’un point extrémal de C est un point x ∈ C tel que si
y, z ∈ C, t ∈ (0, 1) et x = (1− t)y + tz, alors y = z = x).

Exercice 113 Inégalité de Hölder

Soient p, q deux réels strictement positifs tels que 1
p

+ 1
q

= 1. Soient X et Y deux

variables aléatoires réelles telles que X ∈ Lp(P ) et Y ∈ Lq(P ).
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1. Vérifier que p, q > 1.

2. Vérifier que pour tout réels positifs a, b et pour tout λ > 0,

ab ≤ λpap

p
+

bq

λqq
.

3. En déduire que XY ∈ L1(P ) et que

E[|XY |] ≤ λpE[|X|p]
p

+
E[|Y |q]
λqq

,

quel que soit λ > 0.

4. En déduire l’inégalité de Hölder :

E[|XY |] ≤ E[|X|p]1/pE[|Y |q]1/q

(indication : on optimisera l’inégalité de la question précédente en λ > 0).

5. Retrouver l’inégalité de Cauchy-Schwarz comme cas particulier de l’inégalité de
Hölder.

* Exercice 114 Une généralisation de l’inégalité de Hölder

Soient p1, . . . , pn des nombres réels strictement positifs tels que 1
p1

+ . . . + 1
p1

= 1

(n ≥ 2) et X1, . . . , Xn des variables aléatoires réelles satisfaisant Xi ∈ Lpi(P ), pour tout
i = 1, . . . , n. Montrer que X1 . . . Xn ∈ L1(P ) et que

E[|X1 . . . Xn|] ≤ E[|X1|p1 ]1/p1 . . .E[|Xn|pn ]1/pn

(on pourra démontrer ce résultat par récurrence).

* Exercice 115 Inégalité de Minkowski

Soient X et Y deux variables aléatoires réelles et p ≥ 1 un réel quelconque. On suppose
que X, Y ∈ Lp(P ).

1. Montrer que X + Y ∈ Lp(P ).

2. Vérifier que |X||X + Y |p−1 et |Y ||X + Y |p−1 sont intégrables et que

E[|X + Y |p] ≤ E[|X||X + Y |p−1] + E[|Y ||X + Y |p−1].

3. A l’aide de l’inégalité de Hölder, en déduire l’inégalité de Minkowski :

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p.

41



Exercice 116 Inégalités entre moments

Soit X une variable aléatoire réelle. Montrer que pour tous réels p, q ≥ 1 tels que p ≤ q,
l’existence d’un moment d’ordre q pour X implique l’existence d’un moment d’ordre p et,
le cas échéant,

E[|X|p]1/p ≤ E[|X|q]1/q

(on pourra obtenir ce résultat à l’aide de l’inégalité de Jensen ou de l’inégalité de Hölder).

Exercice 117 Inégalité d’association de Chebychev

Soit X une variable aléatoire réelle et f et g deux fonctions croissantes de IR dans
IR telles que f(X) et g(X) sont de carré intégrable. On souhaite montrer qu’alors, la
covariance entre f(X) et g(X) est positive.

1. Soit X ′ une variable aléatoire réelle indépendante de X et de même loi que celle-ci.
Montrer que (f(X) − f(X ′))(g(X) − g(X ′)) est une variable aléatoire positive et
intégrable.

2. Conclure.

* Exercice 118 Une inégalité de Cauchy-Schwarz pour les matrices aléatoires

Soient X et Y deux vecteurs aléatoires réels de taille d (d ≥ 1) de carré intégrable.

1. Montrer que E[XX>], E[Y Y >] et E[XY >] sont bien définies, et que E[XY >] et
E[Y X>] sont les matrices transposées l’une de l’autre.
Dans toute la suite de l’exercice, on supposera que E[Y Y >] est inversible, et on
souhaite déontrer l’inégalité suivante:

E[XY >]E[Y Y >]−1E[Y X>] � E[XX>]

au sens de l’ordre de Loewner pour les matrices symétriques réelles.

2. Vérifier l’inégalité dans le cas où d = 1.

3. Soit M ∈ IRp×p (p ≥ 1) une matrice définie par blocs:

M =

(
A B
B> C

)
,

où A ∈ IRk×k, B ∈ IRk×l, C ∈ IRl×l, k + l = p et A et C sont symétriques. On
suppose que C est inversible. On appelle le complément de Schur de C dans M
la matrice A − BC−1B> ∈ IRk×k. Montrer que M est semi-définie positive si et
seulement si C et son complément de Schur dans M le sont.

4. Soit M ∈ IR2d×2d la matrice définie par blocs de la manière suivante:

M =

(
E[XX>] E[XY >]
E[Y X>] E[Y Y >]

)
.
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Montrer que M est l’espérance d’une matrice aléatoire presque sûrement semi-
définie positive.

5. Conclure.

4.4 Caractérisation de la loi et de l’indépendance à l’aide de l’espérance et
des fonctions tests

* Exercice 119

Soient X et Y deux variables aléatoires définies sur un même espace de probabilité
et à valeurs dans un espace mesurable (E, E). Montrer que les propriétés suivantes sont
équivalentes :

(i) X et Y ont la même loi

(ii) Pour toute fonction positive et mesurable f : E → IR, E[f(X)] = E[f(Y )]

(iii) Pour toute fonction mesurable et bornée f : E → IR, E[f(X)] = E[f(Y )]

(iv) Pour toute fonction mesurable f : E → [−1, 1], E[f(X)] = E[f(Y )].

Lorsque (E, E) = (IR,B(IR)), vérifier que ces propriétés sont aussi équivalentes à la suiv-
ante :

(v) Pour toute fonction continue bornée f : IR→ IR, E[f(X)] = E[f(Y )]

(indice : pour cette dernière propriété, on pourra vérifier que pour tout t ∈ IR, la fonction
1(−∞,t] est la limite simple d’une suite croissante de fonctions continues et positives et
invoquer le théorème de convergence monotone).

Exercice 120

SoientX et Y deux variables aléatoires réelles, toutes deux dans [0, 1] presque sûrement.
On suppose que E[Xn] = E[Y n] pour tout n ∈ IN∗.

1. Vérifier que pour tout polynôme P , E[P (X)] = E[P (Y )].

2. En déduire que pour toute fonction continue f : IR → IR, E[f(X)] = E[f(Y )]
(on pourra invoquer le théorème de Weierstrass, qui indique que toute fonction
continue g : [0, 1] → IR peut être approchée arbitrairement bien, pour la norme
infinie sur [0, 1], par des polynômes).

3. En déduire que X et Y ont la même loi (on pourra utiliser l’exercice précédent).

4. Plus généralement, vérifier que si deux variables aléatoires réelles sont bornées et
ont les mêmes moments, alors elles ont la même loi.
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5. Dans cette question, on propose un contre-exemple dans le cas de variables non
bornées. Soit U ∼ N (0, 1) et V une variable aléatoire admettant pour densité, par
rapport à la mesure de Lebesgue, la fonction f : x ∈ IR 7→ 1√

2π
e−x

2/2(1 + sin(πx)).

a) Vérifier que f est bien une densité par rapport à la mesure de Lebesgue.
b) Soient X = eU et Y = eV . Montrer que E[Xn] = E[Y n] pour tout n ∈ IN∗.

Exercice 121

Soient X et Y deux variables aléatoires réelles i.i.d de loi normale centrée réduite.
Montrer que X2 + Y 2 suit une loi exponentielle dont on déterminera le paramètre.

Exercice 122

Soit X une variable aléatoire exponentielle de paramètre λ > 0 et soit Z une variable
de Bernoulli, de paramètre 1/2, indépendante de X. Montrer que (2Z− 1)X est continue
et calculer sa densité.

Exercice 123

Soit X une variable aléatoire gaussienne centrée réduite (i.e., de paramètres 0 et 1)
et soit Z une variable de Bernoulli, de paramètre 1/2, indépendante de X. Montrer que
(2Z − 1)X a la même loi que X. Ces deux variables sont-elles indépendantes ?

Exercice 124

Soit X une variable aléatoire réelle continue, dont la densité est donnée par f(x) =
Ce−λ|x|, x ∈ IR, où λ > 0 et C est une constante de normalisation.

1. Calculer la valeur de C en fonction de λ.

2. Pour tout x ∈ IR, on note s(X) le signe de x: s(x) = 1 si x > 0, s(0) = 0 et
s(x) = −1 si x < 0.

a) Calculer les lois de s(X) et de |X|.
b) Démontrer que s(X) et |X| sont indépendantes.
c) Montrer que, plus généralement, si Y est une variable aléatoire réelle admet-

tant une densité paire par rapport à la mesure de Lebesgue, alors s(Y ) et |Y |
sont indépendantes.

Exercice 125

Soit X une variable aléatoire géométrique sur IN de paramètre p ∈ (0, 1) (i.e., pour tout
k ∈ IN, P (X = k) = (1 − p)kp) et Y une variable aléatoire exponentielle de paramètre
λ > 0, indépendante de X. Vérifier que la variable aléatoire X + Y est continue et
déterminer sa densité par rapport à la mesure de Lebesgue.

Exercice 126
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Soient X et Y deux variables aléatoires indépendantes normales centrées réduites.
Montrer que X + Y et X − Y sont indépendantes.

(Dans l’exercice 150, on montrera la réciproque : si X et Y sont deux variables
aléatoires réelles i.i.d telles que X + Y et X − Y sont indépendantes, alors X et Y
sont nécessairement gaussiennes.)

Exercice 127

Soient X et Y deux variables aléatoires réelles i.i.d de loi exponentielle. Montrer que
min(X, Y ) et |X − Y | sont indépendantes.

(Réciproquement, on pourrait montrer que si X et Y sont deux variables aléatoires
réelles i.i.d admettant une densité par rapport à la mesure de Lebesgue, qui est positive
sur IR∗+ et nulle sur IR− et telles que min(X, Y ) et |X − Y | sont indépendantes, alors X
et Y suivent une loi exponentielle.)

Exercice 128

Soient X et Y deux variables aléatoires réelles i.i.d de loi géométrique sur IN∗. Montrer
que min(X, Y ) et |X − Y | sont indépendantes.

Exercice 129

Soient X et Y deux variables aléatoires réelles i.i.d, admettant une densité f par
rapport à la mesure de Lebesgue. Soient U = min(X, Y ) et V = max(X, Y ).

1. Montrer que U et V admettent une densité jointe par rapport à la mesure de
Lebesgue, et calculer les densités marginales de U et V .

2. U et V sont-elles indépendantes ? On justifiera rigoureusement la réponse.

Exercice 130

Soit n ≥ 1 et X1, . . . , Xn des variables aléatoires réelles i.i.d de loi exponentielle de
paramètre 1. On pose

Yn = max
1≤i≤n

Xi et Zn =
n∑
i=1

Xi

i
.

1. Montrer par récurrence que Yn et Zn ont la même loi.

2. En déduire que
E[Yn]

log n
−−−→
n→∞

1.

3. Si X1, . . . , Xn sont des variables aléatoires réelles i.i.d de loi exponentielle de

paramètre λ > 0, quelle est la limite de
E [max1≤i≤nXi]

log n
?

Exercice 131 Echantillon réordonné et statistiques d’ordre
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Soit n ≥ 1 et X1, . . . , Xn des variables aléatoires réelles i.i.d admettant une densité. On
réordonne X1, . . . , Xn dans l’ordre croissant, et on note X(1), . . . , X(n) la liste réordonnée.
Par exemple, X(1) = min(X1, . . . , Xn), X(2) est le second plus petit de X1, . . . , Xn et
X(n) = max(X1, . . . , Xn).

1. Montrer que X1, . . . , Xn sont deux à deux distincts, presque sûrement.

2. Vérifier que X(1), . . . , X(n) sont bien des variables aléatoires.

3. Les variables aléatoires X(1), . . . , X(n) sont-elles indépendantes ?

4. Pour k = 1, . . . , n, calculer la fonction de répartition de X(k).

5. Montrer que la loi jointe de X(1), . . . , X(n) admet une densité par rapport à la
mesure de Lebesgue de IRn, qu’on déterminera à l’aide de la densité et de la fonction
de répartition de X1.

6. Montrer qu’il existe n variables aléatoires R1, . . . , Rn telles que presque sûrement,
on ait Xk = X(Rk) pour tout k = 1, . . . , n.

7. Montrer que R1, . . . , Rn sont deux à deux distinctes presque sûrement.
a) Pour k = 1, . . . , n, déterminer la loi de Rk.
b) Déterminer la loi jointe de R1, . . . , Rn.

Exercice 132 Loi des écarts

Soient X1, . . . , Xn des variables aléatoires réelles i.i.d, dont on note X(1), X(2), . . . , X(n)

l’échantillon réordonné dans l’ordre croissant.

1. En supposant que X1 ∼ Exp(λ) pour un certain λ > 0, déterminer la loi jointe de
X(1), X(2) −X(1), X(3) −X(2), . . . , X(n) −X(n−1) (on pourra utiliser les résultats de
l’exercice 131).

2. Supposons que X1 ∼ U([0, 1]). Déterminer la loi de chacune des variables suivantes:
X(1), X(2) − X(1), X(3) − X(2), . . . , X(n) − X(n−1), 1 − X(n). Ces variables sont-elles
indépendantes ?

* Exercice 133 Distances en probabilités définies à l’aide d’espérances

Soit (E, E) un espace mesurable et soit F une famille de fonctions mesurables de
E dans IR. Etant données deux probabilités P et Q sur (E, E), on définit d(P,Q) =
supf∈F |E[f(X)]− E[f(Y )]|, où X ∼ P et Y ∼ Q.

1. Vérifier que la définition de d(P,Q) ne dépend pas du choix du couple de variables
aléatoires X et Y de lois respectives P et Q.

2. Vérifier que d est symétrique et qu’elle satisfait l’inégalité triangulaire.

3. Supposons que F = {1·∈A : A ∈ E}. Vérifier qu’alors, d définit une distance sur
l’ensemble des probabilités sur (E, E).

4. Supposons que F est l’ensemble de toutes les fonctions mesurables de E dans
[−1, 1]. Vérifier qu’alors, d définit aussi une distance sur l’ensemble des probabilités
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sur (E, E). Vérifier qu’on obtient la même distance que dans la question précédente.
On pourra aussi vérifier qu’on obtient la distance en variation totale, étudiée dans
l’exercice 54.

5. Supposons que (E, E) = (IRd,B(IRd)), où d ≥ 1. Dans chacun des cas suivants, d
définit-elle une distance ?

a) d = 1 et F = {1·≤t : t ∈ IR} ;
b) F = {eiu>· : u ∈ IRd} (dans ce cas, | · | est à entendre comme module, dans la

définition de d) ;
c) F = {u>· : u ∈ IRd, ‖u = 1‖} ;
d) F = {f(u>·) : u ∈ IRd, f : IRd → [−1, 1] mesurable} ;
e) F est la classe de toutes les fonctions 1-lipschitziennes de IRd dans IR (d est

alors appelée distance de Wasserstein-1, très utilisée en transport optimal).

* Exercice 134 Définition variationnelle des médianes

Soit X une variable aléatoire réelle admettant un moment d’ordre 1.

1. Vérifier que pour tout t ∈ IR, |X − t| admet aussi un moment d’ordre 1.

2. Soit Φ : IR→ IR la fonction définie par Φ(t) = E[|X−t|], pour tout t ∈ IR. Vérifier
que Φ est une fonction convexe et coercive (i.e., Φ(t) −−−−→

t→±∞
∞).

3. En déduire que Φ a au moins un minimiseur. Le but de l’exercice est de montrer
que les minimiseurs de Φ sont exactement les médianes de X.

4. Soit t∗ une médiane de X. On va démontrer que pour tout t ∈ IR, Φ(t)−Φ(t∗) ≥ 0,
avec égalité si et seulement si t est une médiane de X.

a) Vérifier que pour tout t ∈ IR, on peut écrire

Φ(t) = 2E[(X − t)1X>t]− E[X] + t

= E[X]− t− 2E[(X − t)1X<t].

b) Soit t ∈ IR tel que P (X ≥ t) < 1/2.
i – Vérifier que t > t∗ et que

Φ(t)− Φ(t∗) = (t− t∗) (1− 2P (X > t))− 2E[(X − t∗)1t∗<X≤t].

ii – En déduire que

Φ(t)− Φ(t∗) ≥ (t− t∗) (1− 2P (X > t∗))

et que Φ(t) > Φ(t∗).
c) Montrer que, similairement, si t ∈ IR est tel que P (X ≤ t) < 1/2, alors

Φ(t) > Φ(t∗).
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d) Déduire des questions précédentes que tout minimiseur de Φ est nécessairement
une médiane de X.

e) Vérifier que si t, t′ sont deux médianes de X, alors Φ(t) = Φ(t′) (on pourra
démontrer une double inégalité).

f) Conclure.

5. Dans cette question, on ne suppose plus que X admette un moment d’ordre 1.
a) Montrer que pour tout t ∈ IR, |X − t| − |X| est intégrable.
b) En adaptant les raisonnements précédents (mais en tenant rigoureusement

compte des questions d’intégrabilité), montrer que l’ensemble des médianes de
X cöıncide avec l’ensemble des minimiseurs de la fonction Ψ : IR→ IR définie
par Ψ(t) = E[|X − t| − |X|], pour tout t ∈ IR.

* Exercice 135 Définition variationnelle des quantiles

Soit X une variable aléatoire réelle et α ∈ (0, 1). Soit `α : IR→ IR la fonction définie
par `α(t) = αt si t ≥ 0, `α(t) = (α− 1)t si t < 0.

1. Vérifier que pour tout t ∈ IR, la variable aléatoire `α(X− t)− `α(X) est intégrable.

2. Pour t ∈ IR, soit Φα(t) = E[`α(X − t) − `α(X)]. En adaptant vos réponses de
l’exercice précédent, montrer que l’ensemble des minimiseurs de Φα cöıncide avec
l’ensemble des quantiles d’ordre α de X.

4.5 Inégalités en probabilité

Exercice 136

Démontrer qu’au plus vingt pourcents des français sont plus de cinq fois plus riches
que le français moyen.

Exercice 137 Distance entre médiane et moyenne

Soit X une variable aléatoire réelle de carré intégrable. Soit m une médiane de X.

1. A l’aide de l’inégalité de Bienaymé-Chebychev, montrer que |m−E[X]| ≤
√

2Var(X).

2. A l’aide de l’exercice 134, vérifier que E[|X −m|] ≤ E[|X − E[X]|].
3. En déduire que |E[X]−m| ≤

√
Var(X).

Exercice 138 Inégalité de Chebychev-Cantelli

Soit X une variable aléatoire réelle de carré intégrable et t > 0.

1. Montrer que pour tout λ ≥ 0,

P[X − EX ≥ t] ≤ VarX + λ2

(t+ λ)2
.
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2. Vérifier qu’on obtient l’inégalité de Bienaymé-Chebychev en prenant λ = 0.

3. En optimisant le membre de droite de l’inégalité ci-dessus, déduire l’inégalité de
Chebychev-Cantelli :

P[X − EX ≥ t] ≤ VarX

VarX + t2

(on remarquera que cette inégalité est strictement meilleure que l’inégalité de Bi-
enaymé-Chebychev : notamment, la borne obtenue est toujours plus petite que 1,
même lorsque t est très petit).

4. A l’aide de l’inégalité de Chebychev-Cantelli démontrée plus haut, retrouver le
résultat de l’exercice précédent.

Exercice 139 Un intervalle de confiance

Soient X1, . . . , Xn des variables aléatoires i.i.d de loi de Bernoulli de paramètre p ∈
[0, 1], où n ≥ 1. Dans une perspective statistique, à l’aide des valeurs prises par X1, . . . , Xn

(interprétées comme données), on cherche à estimer le paramètre p de leur loi, supposé in-
connu. Un estimateur raisonnable est donné par la moyenne empirique X̄n = n−1

∑n
i=1 Xi.

1. Déterminer E[X̄n] et Var(X̄n).

2. Montrer que pour tout t > 0,

P (|X̄n − p| > t) ≤ 1

4nt2
.

3. Fixons α ∈ (0, 1), pouvant être interprété, dans la suite, comme un niveau de
confiance (en pratique, on choisit souvent α = 0.05).

a) Déterminer un réel t > 0 tel que |X̄n− p| ≤ t avec probabilité au moins 1−α.

b) En fonction de α et ε > 0, déterminer un nombre n suffisant de données
permettant d’obtenir une erreur d’estimation de p d’au plus ε avec probabilité
au moins 1− α.

c) Quelle valeur obtenez-vous pour α = 0.05 et ε = 0.1 ? Pour α = 0.05 et
ε = 0.01 ?

4. On admettra, dans cette question, l’inégalité de Hoeffding : si Y1, . . . , Yn sont des
variables aléatoires réelles i.i.d telles que 0 ≤ Y1 ≤ 1 presque sûrement, alors pour
tout réel t > 0,

P (|Ȳn − E[Y1]| > t) ≤ 2e−2nt2 .

a) En appliquant l’inégalité de Hoeffding, trouver un réel t > 0 tel que |X̄n−p| ≤ t
avec probabilité au moins 1− α.
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b) En fonction de α et ε > 0, déterminer une nouvelle valeur du nombre n
suffisant de données permettant d’obtenir une erreur d’estimation de p d’au
plus ε avec probabilité au moins 1− α.

c) Cette fois-ci, quelle valeur obtenez-vous pour α = 0.05 et ε = 0.1 ? Pour
α = 0.05 et ε = 0.01 ?

4.6 Fonctions caractéristiques

Exercice 140

Déterminer la fonction caractéristique d’une variable aléatoire réelle de loi :

1. Bernoulli de paramètre p ∈ [0, 1] ;

2. Binomiale de paramètre (n, p), où n ≥ 1 et p ∈ [0, 1] ;

3. Géométrique sur IN de paramètre p ∈ [0, 1] ;

4. Uniforme sur [a, b], où a ≤ b.

Exercice 141

Soit z ∈ C un nombre complexe de partie réelle strictement positive. On écrit z = a+ib
avec a ∈ IR∗+ et b ∈ IR et on cherche à montrer que

∫∞
0
e−zx dx = 1/z.

1. Vérifier que l’intégrale est bien définie.

2. En effectuant des intégrations par parties successives, montrer que pour tout α ∈
IR, ∫ ∞

0

e−x cos(αx) dx =
1

1 + α2

et que ∫ ∞
0

e−x sin(αx) dx =
−α

1 + α2
.

3. Conclure.

4. En déduire une expression de la fonction caractéristique de la loi exponentielle de
paramètre λ > 0.

Exercice 142

A l’aide des fonctions caractéristiques, démontrer que la somme de n variables aléatoires
i.i.d de loi de Bernoulli de paramètre p ∈ [0, 1] suit la loi binomiale de paramètres n, p.

Exercice 143

1. Déterminer la fonction caractéristique d’une variable aléatoire de Poisson de paramètre
λ > 0 (on admettra que

∑∞
k=0 z

k/k! = ez, pour tout z ∈ C).
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2. En déduire la loi de la somme de n variables aléatoires indépendantes de lois de
Poisson de paramètres respectifs λ1, . . . , λn > 0, où n ≥ 1 est un entier quelconque.

Exercice 144

Dans cet exercice, on cherche à calculer la fonction caractéristique d’une variable
aléatoire gaussienne.

1. Soit X une variable aléatoire réelle gaussienne centrée réduite et soit Φ sa fonction
caractéristique.

a) Montrer, en le justifiant, que Φ est dérivable sur IR et qu’elle satisfait, pour
tout t ∈ IR, Φ′(t) = −tΦ(t).

b) En déduire l’expression de Φ(t), pour tout t ∈ IR.

2. On suppose cette fois-ci que X ∼ N (µ, σ2), où µ ∈ IR et σ2 > 0.
a) Rappeler la loi de X−µ

σ
(on ne demande pas de redémontrer ce résultat).

b) En déduire une expression de la fonction caractéristique de X.

Exercice 145

Soit X un vecteur aléatoire réel de taille d ≥ 1.

1. La loi de X est-elle entièrement déterminée par la donnée de la loi de chacune de
ses coordonnées ?

2. Montrer que la loi de X est entièrement déterminée par la donnée de la loi de
chaque combinaison linéaire de ses coordonnées.

Exercice 146

Montrer que la loi d’un vecteur aléatoire réel X est symétrique (i.e., X et −X ont la
même loi) si et seulement si toutes les valeurs prises par sa fonction caractéristique sont
réelles.

Exercice 147

Montrer que la fonction caractéristique d’un vecteur aléatoire réel est toujours con-
tinue.

Exercice 148

Soit X une variable aléatoire réelle, de fonction caractéristique Φ. Supposons qu’il
existe t ∈ IR∗ tel que |Φ(t)| = 1. Montrer que X est nécessairement discrète et que ses
atomes sont inclus dans une progression arithmétique de raison 2π/t (on pourra utiliser
le résultat de l’exericce 108).

Exercice 149
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Soit X un vecteur aléatoire réel, de fonction caractéristique Φ. On veut montrer que
si pour tout t ∈ IR, |Φ(t)| = 1, alors X est nécessairement constant presque sûrement
(i.e., ∃c ∈ IRd, X = c p.s.). On va procéder de deux manières différentes.

1. Première méthode :
a) Soit Y une variable aléatoire de même loi que X, mais indépendante de X.

Calculer la fonction caractéristique de X − Y .
b) En déduire que X = Y presque sûrement.
c) On souhaite en déduire que X est constante presque sûrement. Démontrer

qu’il est nécessaire et suffisant de prouver que chaque coordonnée de X est
constante presque sûrement. Ainsi, dans toute la suite, on fixe j ∈ {1, . . . , d}
et on va démontrer que Xj est constante presque sûrement.

d) Vérifier que Xj et Yj (les j-èmes coordonnées de X et Y ) sont i.i.d et vérifient
Xj = Yj presque sûrement.

e) Dans cette question uniquement, supposons queXj admette un moment d’ordre
2.

i – Vérifier que Var(Xj) = 1
2
E[(Xj − Yj)2].

ii – Conclure.
f) On ne suppose plus l’existence d’un moment d’ordre 2. Soit Fj la fonction de

répartition de Xj et supposons, par l’absurde, l’existence d’un réel t tel que
0 < Fj(t) < 1.

i – Vérifier que P (Xj ≤ t) > 0 et P (Xj > t) > 0.
ii – Calculer P (Xj ≤ t, Yj > t).
iii – Conclure.

2. Seconde méthode.
a) Soit u ∈ IRd un vecteur non nul fixé.

i – A l’aide de l’exercice 148, montrer que pour tout t > 0, la variable
aléatoire tu>X est discrète et que ses atomes sont inclus dans une suite
arithmétique de raison 2π/t.

ii – En déduire que nécessairement, u>X est constante presque sûrement.
b) Conclure que X est constante presque sûrement.

* Exercice 150

Soient X et Y deux variables aléatoires réelles i.i.d. On suppose que X + Y et X − Y
sont indépendantes. Le but de cet exercice est de montrer qu’alors, nécessairement, X et
Y sont gaussiennes.

1. Soit Φ la fonction caractéristique de X. Montrer que pour tous s, t ∈ IR,

Φ(s+ t)Φ(s− t) = Φ(s)2|Φ(t)|2.

52



2. Déduire que pour tout t ∈ IR et pour tout n ∈ IN∗,

Φ(t) = Φ

(
t

2n

)2n ∣∣∣∣Φ( t

2n

)∣∣∣∣4n−2n

et donc, que pour tout t ∈ IR, Φ(t) 6= 0.

3. On admettra le théorème de relèvement: Si f : IR → C est une fonction continue
telle que pour tout t ∈ IR, f(t) 6= 0, il existe une fonction continue g : IR → IR
telle que pour tout t ∈ IR, f(t) = |f(t)|eig(t). En déduire l’existence d’une fonction
φ : IR→ C continue telle que φ(0) = 0 et Φ = eφ.

4. Montrer que pour tout t ∈ IR, φ(−t) = φ(t).

5. Démontrer que pour tous s, t ∈ IR,

φ(s+ t) + φ(s− t) = 2φ(s) + φ(t) + φ(−t).

6. On définit la partie paire φ1 et la partie impaire φ2 de φ de la manière suivante:

φ1(t) =
1

2
(φ(t) + φ(−t)) et φ2(t) =

1

2
(φ(t)− φ(−t)) ,

pour tout t ∈ IR.
a) Montrer que pour tout t ∈ IR, φ1(t) ∈ IR et φ2(t) ∈ iIR.
b) En utilisant la question 4 (en (s, t) et en (−s, t)), montrer que pour tout
s, t ∈ IR, {

φ1(s+ t) + φ1(s− t) = 2φ1(s) + 2φ1(t)

φ2(s+ t) + φ2(s− t) = 2φ2(s)

7. Pour la partie impaire φ2:
a) Déduire que pour tout s ∈ IR, φ2(2s) = 2φ(s), puis que pour tout s, t ∈ IR,
φ2(s+ t) = φ2(s) + φ2(t).

b) Montrer qu’il existe µ ∈ IR tel que pour tout t ∈ IR,

φ2(t) = itµ.

8. Pour la partie paire φ1: soit Q(s, t) = φ1(s+ t)− φ1(s)− φ1(t), pour s, t ∈ IR.
a) Montrer que la fonction Q est bilinéaire et symétrique.
b) En déduite l’existence de λ ∈ IR tel que pour tout s, t ∈ IR, Q(s, t) = λst.
c) Montrer que φ1(0) = 0.
d) En déduire que φ1(t) = λ

4
t2, pour tout t ∈ IR.

e) Montrer que nécessairement, λ ≤ 0.

9. En déduire que X est ou bien constante, ou bien gaussienne.
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* Exercice 151 Formule d’inversion

Soit X une variable aléatoire réelle, dont on note Φ la fonction caractéristique. Fixons
a, b ∈ IR avec a < b.

1. Soit h : IR → C la fonction définie par h(t) = e−ita−e−itb
it

Φ(t) si t ∈ IR \ {0} et
h(0) = b− a sinon. Vérifier que h est continue sur IR.

2. Soit H : IR→ C la fonction définie par H(t) = 1
2π

∫ t
−t h(u) du, pour t ∈ IR.

a) Montrer que pour tout t ∈ IR, H(t) = E[Jt(X)] où Jt : IR→ IR est définie par

Jt(x) =
1

π

∫ t(x−a)

t(x−b)

sin(u)

u
du

pour tout t ∈ IR.
b) Vérifier que pour tout x ∈ IR,

Jt(x) −−−→
t→∞


1 si a < x < b
1
2

si x ∈ {a, b}
0 sinon

on pourra utiliser le fait que lim
A→∞

∫ A

0

sin(u)/u du = π/2).

c) En déduire que H(t) −−−→
t→∞

P (a < X < b) + P (X=a)+P (X=b)
2

.

3. Déduire de la question précédente une preuve du fait que la fonction caractéristique
d’une variable aléatoire réelle caractérise sa loi, i.e., si deux variables aléatoires
réelles ont la même fonction caractéristique, alors elles sont identiquement dis-
tribuées.

4. Supposons que
∫∞
−∞ |Φ(t)| dt <∞.

a) Vérifier qu’alors, pour tous a, b ∈ IR avec a < b, P (a < X < b) ≤ b − a (on
pourra montrer que pour tout t ∈ IR, |(e−ita − e−itb)/(it)| ≤ b− a).

b) En déduire que la loi de X est absolument continue par rapport à la mesure
de Lebesgue.

c) Conclure que X admet une densité par rapport à la mesure de Lebesgue, et
que celle-ci est donnée par f : t ∈ IR 7→ 1

2π

∫∞
−∞ e

−ituΦ(u) du.

5. En s’inspirant des questions précédentes, montrer que pour tout a ∈ IR,

1

2t

∫ t

−t
e−iauΦ(u) du −−−→

t→∞
P (X = a).
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5 Espérances conditionnelles

5.1 Calcul d’espérances conditionnelles

Exercice 152

Soit Ω = {1, 2, 3, 4, 5, 6} muni de sa tribu discrète A = P(Ω) et de la probabilité
uniforme P = U(Ω). Soit X la variable aléatoire réelle définie par X(ω) = ω, pour
tout ω ∈ Ω. Soit B la sous-tribu de A codant l’information de la parité de X, i.e.,
B = {∅, {1, 3, 5}, {2, 4, 6},Ω}.

1. Montrer que si Y : Ω→ IR est une variable aléatoire réelle B-mesurable, alors elle
est constante sur {1, 3, 5} et sur {2, 4, 6}.

2. Déterminer E[X|B].

Exercice 153

Soit X une variable aléatoire réelle définie sur un espace de probabilité (Ω,A, P ) et
soit A ∈ A. Soit B la sous-tribu de A engendrée par A. On suppose que X admet un
moment d’ordre 1.

1. Montrer que pour toute variable aléatoire Y : Ω→ IR mesurable par rapport à B,
il existe λ, µ ∈ IR tels que Y = λ1A + µ1A{ .

2. En déduire une expression de E[X|B] (on pourra distinguer les cas où P (A) = 0
ou 1).

3. Vérifier qu’on a bien E[E[X|B]] = E[X].

Exercice 154

Soit X une variable aléatoire réelle définie sur un espace de probabilité (Ω,A, P ) et
intégrable. Soient A1, . . . , An des éléments de A, deux à deux disjoints, tels que A1∪ . . .∪
An = Ω (n ≥ 1). Soit B la sous-tribu de A engendrée par A1, . . . , An.

1. Montrer que tout élément de B s’écrit sous la forme
⋃
i∈I

Ai, pour un certain sous-

esnemble (éventuellement vide) I de {1, . . . , n}.
2. En déduire que toute variable aléatoire réelle B-mesurable sécrit sous la forme

n∑
i=1

λi1Ai , où λ1, . . . , λn ∈ IR.

3. En déduire une expression de E[X|B].

Exercice 155

Soit (Ω,A, P ) un espace de probabilité et A,B ∈ A. Déterminer E[1A|1B].
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Exercice 156

Soit X une variable aléatoire réelle intégrable et symétrique (i.e., X et −X ont la
même loi). Calculer E[X||X|].

Exercice 157

Soient X1, . . . , Xn des variables aléatoires réelles intégrables et i.i.d, où n ∈ IN∗.

1. Montrer que pour tout i = 1, . . . , n, E[Xi|X1 + . . .+Xn] = E[X1|X1 + . . .+Xn].

2. En déduire E[X1|X1 + . . .+Xn].

Exercice 158

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d admettant un moment d’ordre 1,
noté µ, et N une variable aléatoire à valeurs dans IN∗, admettant un moment d’ordre 1,
et indépendante de (Xn)n≥1. Déterminer l’espérance conditionnelle de

∑N
i=1 Xi sachant

N .

Exercice 159 Martingales

Soit (Mn)n≥1 une suite de variables aléatoires réelles intégrables. On dit que la suite
(Mn)n≥1 est

• une martingale si et seulement si pour tout n ≥ 1,

E[Mn+1|Mn] = Mn p.s.

• une sous-martingale si et seulement si pour tout n ≥ 1,

E[Mn+1|Mn] ≥Mn p.s.

• une sur-martingale si et seulement si pour tout n ≥ 1,

E[Mn+1|Mn] ≤Mn p.s.

1. Si (Mn)n≥1 est une martingale (resp. sous-martingale, sur-martingale), montrer
que la suite (E[Mn])n≥1 est constante (resp. croissante, décroissante).

2. Si (Mn)n≥1 est une martingale est f est une fonction convexe strictement monotone
telle que pour tout n ≥ 1, f(Mn) est intégrable, montrer que (f(Mn))n≥1 est une
sous-martingale.

3. Soit X une variable aléatoire réelle intégrable sur un espace de probabilité (Ω,A, P )
et soit (An)n≥1 une suite croissante de sous-tribus de A. Montrer que la suite
(E[X|An])n≥1 est une martingale.
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4. Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi pδ{1} + (1 − p)δ{−1}, où
p ∈ [0, 1]. Pour tout n ≥ 1, on pose Sn = X1 + . . . + Xn. Suivant la valeur de p,
établir si (Sn)n≥1 est une martingale, une sous-martingale ou une sur-martingale.

* Exercice 160 Lemme de Doob-Dynkin

Soit X une variable aléatoire définie sur un espace de probabilité (Ω,A, P ), à valeurs
dans un espace mesurable (E, E) quelconque. Soit B la tribu engendrée par X et soit
Y une variable aléatoire B-mesurable, à valeurs dans un espace mesurable (F,F). On
cherche à montrer que Y s’écrit nécessairement comme une fonction mesurable de X.

1. Supposons Y de la forme 1A, pour un certain A ∈ A.
a) Vérifier que nécessairement, A = X−1(B) pour un certain B ∈ E .
b) En déduire une fonction mesurable h : E → F telle que Y = h(X).

2. Vérifier que le résultat reste vrai si Y est étagée.

3. Supposons à présent que Y est une variable aléatoire quelconque.
a) Montrer que sans perte de généralité, on peut supposer que Y est positive, ce

qu’on fait dans les questions suivantes.
b) Conclure en approchant Y par une suite croissante de variables aléatoires

étagées.

Exercice 161

Soient X et Y deux variables aléatoires i.i.d de loi uniforme sur [0, 1]. Déterminer
(après s’être assuré de leur existence) E[X/(X + Y )|Y ] et E[max(X, Y )|X].

Exercice 162

Soient X et Y deux variables aléatoires réelles indépendantes. On suppose que X suit
la loi exponentielle de paramètre λ > 0 et que Y ≥ 0 presque sûrement. Déterminer
E[e−XY |Y ].

Exercice 163 Théorème de transfert conditionnel, cas non indépendant, à densité

1. Soient X et Y deux variables aléatoires définies sur un espace de probabilité
(Ω,A, P ), à valeurs dans des espaces mesurables (E, E) et (F,F), respectivement.
Soient µ et ν deux mesures sur (E, E) et (F,F), respectivement. On suppose que
la loi jointe de X et Y admet une densité, qu’on notera f(X,Y ), par rapport à la
mesure produit µ ⊗ ν. Soit h : E × F → IR une fonction mesurable telle que
h(X, Y ) ∈ L1(Ω,A, P ). Montrer que E[h(X, Y )|X] = φ(X) p.s., où φ : E → IR est
la fonction définie par

φ(x) =

{∫
F
h(x, y)

f(X,Y )(x,y)

fX(x)
dν(y) si fX(x) 6= 0,

π log(2) sinon
,
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où fX est la densité de X par rapport à µ.

2. Application : soient X, Y deux variables aléatoires i.i.d de loi uniforme sur [0, 1]
et U = min(X, Y ) et V = max(X, Y ). On cherche à déterminer E[X|V ].

a) Montrer que la loi jointe de U et V admet une densité par rapport à la mesure
de Lebesgue, qu’on déterminera.

b) Justifier le fait que E[X|V ] = E[Y |V ].
c) Vérifier que E[X + Y |V ] = E[U + V |V ].
d) Déduire une expression de E[X|V ].

Exercice 164

SoientX et Y deux variables aléatoires réelles de carré intégrable satisfaisant E[X|Y ] =
Y et E[Y |X] = X presque sûrement.

1. Montrer que E[XY ] = E[X2] = E[Y 2].

2. En déduire que X = Y presque sûrement.

3. Supposons X et Y seulement intégrables.
a) Proposer une fonction φ : IR→ IR qui soit continue, strictement croissante et

bornée.
b) Vérifier que la variable aléatoire (X − Y )(φ(X)− φ(Y )) est intégrable et pos-

itive.
c) Montrer que E[(X − Y )(φ(X)− φ(Y ))] = 0.
d) Conclure que X = Y presque sûrement.

* Exercice 165

Soit X un vecteur aléatoire réel intégrable sur un espace de probabilité (Ω,A, P ) et
soit B une sous-tribu de A. Montrer que X a la même loi que E[X|B] si et seulement si
elle est B-mesurable (auquel cas, X = E[X|B]).

Exercice 166 Identité de la variance

Soit X une variable aléatoire réelle de carré intégrable définie sur un espace de prob-
abilité (Ω,A, P ). Soit B une sous-tribu de A. On définit la variance conditionnelle de X
sachant B comme

Var(X|B) = E[X2|B]− E[X|B]2.

Vérifier l’identité suivante:

Var(X) = Var (E[X|B]) + E [Var(X|B)] .
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5.2 Version conditionnelle d’inégalités classiques

Exercice 167 Inégalité de Cauchy-Schwarz conditionnelle

Soient X et Y deux variables aléatoires réelles définies sur un espace de probabilité
(Ω,A, P ) et soit B une sous-tribu de A. On suppose X et Y de carré intégrable. Montrer
l’inégalité suivante:

E[XY |B]2 ≤ E[X2|B]E[Y 2|B] p.s.

Exercice 168 Inégalité de Jensen conditionnelle

Soit X un vecteur aléatoire réel défini sur un espace de probabilité (Ω,A, P ), à valeurs
dans IRd (d ≥ 1) et soit B une sous-tribu de A. Soit f : IRd → IR une fonction convexe
différentiable. On suppose que X et f(X) sont intégrables. Montrer que

f (E[X|B]) ≤ E[f(X)|B] p.s.

Qu’en est-il du cas où f n’est pas différentiable ? On pourra utiliser le fait que pour tout
x ∈ IRd, f(x) = sup(a,b)∈H a

>x+ b, où H = {(a, b) ∈ IRd× IR : f(y) ≥ a>y+ b,∀y ∈ IRd}.)

* Exercice 169 Inégalité de Hölder conditionnelle

Soient X et Y deux variables aléatoires réelles définies sur un espace de probabilité
(Ω,A, P ) et soit B une sous-tribu de A.

1. Soient p, q > 1 deux réels satisfaisant 1/p + 1/q = 1. On suppose que X ∈
Lp(Ω,A, P ) et que Y ∈ Lq(Ω,A, P ). Montrer que

E[|XY ||B] ≤ E[|X|p|B]1/pE[|Y |q|B]1/q p.s.

2. En déduire que si X ∈ Lp(Ω,A, P ) pour un certain p ≥ 1, alors E[X|B] ∈
Lp(Ω,B, P ).

6 Lois conditionnelles

Exercice 170

Dans chacun des cas suivants, calculer la loi conditionnelle de Y sachant X = x :

1. Y = XZ, où X et Z sont des variables aléatoires réelles indépendantes, Z suit la
loi exponentielle de paramètre 1 et x > 0.

2. Y = X + Z, où X et Z sont des variables aléatoires réelles indépendantes, Z suit
la loi normale centrée réduite et x ∈ IR.
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3. Y = XZ, où X et Z sont des variables aléatoires réelles indépendantes, Z suit la
loi normale centrée réduite et x ∈ IR.

4. Y = X(Z + X), où X et Z sont des variables aléatoires réelles indépendantes, Z
suit la loi normale centrée réduite et x ∈ IR.

5. Y = XZ, où X et Z sont des variables aléatoires réelles indépendantes, Z suit la
loi uniforme sur [1, 2] et x ∈ IR.

Exercice 171

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d normales centrées réduites, et N
une variable aléatoire à valeurs dans IN, indépendante de (Xn)n≥1. On pose S =

∑N
i=1 Xi.

1. Déterminer la loi conditionnelle de S sachant N = n, pour tout n ∈ IN.

2. Si N suit une loi de Poisson de paramètre λ > 0, en déduire l’espérance de S.

Exercice 172

Soient X et Y deux variables aléatoires réelles i.i.d de loi exponentielle de paramètre
1 et soit S = X + Y .

1. Déterminer la loi conditionnelle de X sachant S = s, pour tout s > 0.

2. En déduire la loi conditionnelle de X/S sachant S = s, pour tout s > 0.

3. Les variables aléatoires X/S et S sont-elles indépendantes ?

Exercice 173 Moments conditionnels

Soit (Ω,A, P ) un espace de probabilité et X et Y deux variables aléatoires sur (Ω, ,P ).
On suppose que X est à valeurs dans un espace mesurable quelconque (E, E) et que Y
est réelle. On suppose aussi que Y ∈ Lp(Ω,A, P ), où p ∈ IN∗.

1. Pour tout k = 1, . . . , p, on définit la fonction

mk : E → IR

x 7→
∫

IR

yk dPY |X=x(y).

Pour tout x ∈ E, mk(x) est appelé “k-ème moment conditionnel de Y sachant
X = x”. Montrer que m1(x), . . . ,mp(x) sont bien définis pour PX-presque tout
x ∈ E.

2. Vérifier que pour tout k = 1, . . . , p,

E[Y k|X] = mk(X).
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3. Dans la suite, on suppose que p ≥ 2. Pour tout x ∈ E, on appelle “variance
conditionnelle de Y sachant X = x” la variance d’une variable aléatoire réelle de
loi PY |X=x. On note v(x) cette quantité. Vérifier que pour tout x ∈ E, v(x) est
bien définie et que

v(x) = m2(x)−m1(x)2.

Dans la suite, on note Var(Y |X) la variable aléatoire v(X).

4. Montrer qu’on a l’égalité suivante:

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X]).

Exercice 174

SoientX et Y deux variables aléatoires réelles indépendantes, telles que Y est intégrable.
Retrouver l’égalité E[Y |X] = E[Y ] en utilisant le théorème de transfert conditionnel.

Exercice 175

Dans les cas suivants, déterminer l’espérance conditionnelle de X1 sachant X1 +X2:

1. X1 et X2 sont deux variables aléatoires réelles indépendantes de lois binomiales de
paramètres respectifs (n1, p) et (n2, p), où p ∈]0, 1[ et n1, n2 ∈ IN∗.

2. X1 et X2 deux variables aléatoires réelles indépendantes de lois de Poisson de
paramètres respectifs λ1 et λ2, où λ1, λ2 > 0.

3. X1 et X2 deux variables aléatoires réelles indépendantes de lois exponentielles de
paramètres respectifs λ1 et λ2, où λ1, λ2 > 0.

Exercice 176

Soit f la fonction de deux variables réelles définie par:

f(x, y) = Cxe−x(x+y)/21x,y≥0, ∀(x, y) ∈ IR2,

où C est un nombre positif donné. En effectuant le moins de calculs possible, déterminer
E[Y |X].

Exercice 177

Soient X et Y deux variables aléatoires à valeurs dans des espaces mesurables (E, E)
et (F,F) respectivement, et soit h : E × F → IR une fonction mesurable.

1. Soit f : F → IR une fonction mesurable. Démontrer que pour tout x ∈ E,
f#PY |X=x est une loi conditionnelle de f(Y ) sachant X = x.

2. Démontrer que pour tout x ∈ E, Ph(x,Y )|X=x est une loi conditionnelle de h(X, Y )
sachant X = x.
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3. En déduire que si X et Y sont indépendantes, alors pour tout x ∈ E, Ph(x,Y ) est
une loi conditionnelle de Y sachant X = x.

4. En déduire que si X et Y sont indépendantes et h(X, Y ) est intégrable, alors

E[h(X, Y )|X] = φ(X),

où φ : E → IR est la fonction mesurable donnée par φ(x) = E[h(x, Y )], pour tout
x ∈ E.

Exercice 178

Soient X et Y deux variables aléatoires réelles, dont la loi jointe est supposée continue,
de densité donnée par

f(x, y) = Ce−y10≤x≤y, ∀(x, y) ∈ IR2,

où C est un nombre positif donné.

1. Déterminer la valeur de C.

2. Déterminer la loi conditionnelle de X sachant Y .

3. En déduire la loi conditionnelle de X/Y sachant Y .

4. Qu’en déduit-on sur les variables aléatoires X/Y et Y ?

7 Convergence de suites de variables aléatoires

Dans cette partie, toutes les variables aléatoires sont définies sur un espace de probabilité
(Ω,A, P ).

7.1 Modes de convergence

On rappelle le théorème de Borel-Cantelli. Soit (An)n≥1 une suite d’événement dans A.
Alors:

• Si
∞∑
n=1

P (An) <∞, alors P (lim sup
n→∞

An) = 0 ;

• Si, de plus, les événements A1, A2, . . . sont indépendants, alors si
∞∑
n=1

P (An) = ∞,

alors P (lim sup
n→∞

An) = 1.

(On rappelle que lim sup
n→∞

An =
∞⋂
n=1

∞⋃
p=n

Ap.)
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Exercice 179

Soit (Xn)n≥1 une suite de variables aléatoires réelles. Montrer que les ensembles suiv-
ants sont des événements :

1. {ω ∈ Ω : Xn(ω) −−−→
n→∞

0}

2. {ω ∈ Ω : Xn(ω) −−−→
n→∞

∞}

3. {ω ∈ Ω : (Xn(ω)) converge}

Exercice 180

Soit (Xn)n≥1 une suite de vecteurs aléatoires réels dans IRd et X un vecteur aléatoire
réel donné. Montrer que les propositions suivantes sont équivalentes :

(i) Xn
P−−−→

n→∞
X

(ii) ∀ε > 0, P (‖Xn −X‖ ≥ ε) −−−→
n→∞

0

(iii) ∀ε > 0,∃n0 ∈ IN,∀n ≥ n0, P (‖Xn −X‖ > ε) ≤ ε

(iii) ∀ε > 0,∃n0 ∈ IN,∀n ≥ n0, P (‖Xn −X‖ ≥ ε) ≤ ε

Exercice 181

Soit (Xn)n≥1 une suite de vecteurs aléatoires réels.

1. Montrer que Xn
P−−−→

n→∞
X si et seulement si E

[
‖Xn −X‖]
‖Xn −X‖+ 1

]
−−−→
n→∞

0.

2. Plus généralement, montrer que si f : IR+ → IR+ est n’importe quelle fonction

strictement croissante, majorée, continue en zéro, avec f(0) = 0, alors Xn
P−−−→

n→∞
X

si et seulement si E[f(‖Xn −X‖)] −−−→
n→∞

0.

Indice : on rappelle que pour toute variable aléatoire positive Z,

E[Z] =

∫ ∞
0

P (Z > t) dt

Exercice 182

Soit (Zn)n≥1 une suite de variables aléatoires i.i.d de loi exponentielle de paramètre

λ > 0. Pour tout n ≥ 1, on pose Xn = min(Z1, . . . , Zn). Montrer que Xn
p.s.−−−→
n→∞

0.

Exercice 183

Pour tout entier n ≥ 1, soit Xn une variable aléatoire de loi (1− 1/n)δ{1/n}+ 1/nδ{n}.
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1. Démontrer que Xn converge en probabilité vers zéro.

2. Supposons que X1, X2, . . . sont indépendantes. La suite (Xn)n≥1 converge-t-elle
presque sûrement ?

Exercice 184

Pour tout entier n ≥ 1, soit Xn une variable aléatoire de loi de Poisson de paramètre
1/n. Montrer que

(n!)n
n

Xn
P−−−→

n→∞
0.

* Exercice 185

Soit (M,d) un espace métrique et (xn)n≥1 une suite d’éléments de M , convergeant vers
un élément x ∈M . Pour chaque n ≥ 1, on définit une variable aléatoire Xn à valeurs dans
M (muni de sa tribu borélienne), de loi uniforme dans l’ensemble {xbn/2c, xbn/2c+1, . . . , xn}.
Montrer que Xn

p.s.−−−→
n→∞

x.

Exercice 186

1. Soient X1, X2, . . . des variables aléatoires réelles i.i.d. On suppose que X1 admet
un moment d’ordre 2. Montrer que la moyenne empirique de X1, . . . , Xn tend en
probabilité vers E[X1], lorsque n→∞.

2. En déduire que si, pour tout n ≥ 1, Yn est une variable binomiale de paramètres n
et p ∈ [0, 1], alors Yn/n converge en probabilité, lorsque n→∞, vers une variable
aléatoire que l’on déterminera.

3. Soient X1, X2, . . . des variables aléatoires réelles i.i.d. Pour tout n ≥ 1, on note
Yn le nombre d’indices i ∈ {1, 2, . . . , n} tels que X2i < X2i+1. La suite Yn/n
converge-t-elle en probabilité ?

Exercice 187

Soit (Xn)n≥1 une suite de vecteurs aléatoires réels et X un vecteur aléatoire réel.

1. Montrer que si, pour tout ε > 0,
∞∑
n=1

P (‖Xn − X‖ > ε) < ∞, alors Xn converge

presque sûrement vers X.

2. Montrer que s’il existe p ≥ 1 tel que
∞∑
n=1

E[‖Xn − X‖p] < ∞, alors Xn converge

presque sûrement vers X.

Exercice 188

Soit (Xn)n≥1 une suite de variables aléatoires réelles de même loi.

64



1. Montrer que Xn/n converge en probabilité vers zéro.

2. Supposons, dans cette question, que X1, X2, . . . sont indépendantes (donc i.i.d). On
souhaite montrer que Xn/n converge presque sûrement vers zéro si et seulement si
X1 est intégrable.

a) Montrer que X1 est intégrable si et seulement si pour tout ε > 0, l’intégrale∫ ∞
0

P (|X1| > εt) dt est bien définie.

b) En déduire que X1 est intégrable si et seulement si pour tout ε > 0, la somme
∞∑
n=1

P

(∣∣∣∣Xn

n

∣∣∣∣ > ε

)
est finie.

c) Conclure (on pourra utiliser les résultats de l’exercice 187).

Exercice 189

1. Soit (Xn)n≥1 une suite de variables aléatoires, telles que pour tout n ≥ 1, Xn suit
la loi de Poisson de paramètre 1/n.

a) Montrer que Xn converge en probabilité vers zéro, lorsque n→∞.

b) Montrer que (n!)e
nn!

Xn converge en probabilité vers zéro.
c) Si X1, X2, . . . sont indépendantes, la suite Xn converge-t-elle presque sûrement

vers zéro ?
d) Soient Z1, Z2, . . . des variables aléatoires réelles indépendantes, telles que pour

tout n ≥ 1, Zn suit la loi de Poisson de paramètre n−1 − (n+ 1)−1.
i – Montrer qu’avec probabilité 1, la série de terme général Zn converge.

On peut alors définir, sans ambigüıté avec probabilité 1, les variables

aléatoires Xn =
∞∑
k=n

Zk, pour tout n ≥ 1.

ii – Montrer que pour tout n ≥ 1, Xn suit la loi de Poisson de paramètre
1/n. On pourra calculer sa fonction caractéristique à l’aide du théorème
de convergence dominée.

iii – Montrer que Xn converge presque sûrement vers 0.

2. Pour tout n ≥ 1, soit Xn une variable aléatoire exponentielle de paramètre n. Xn

converge-t-elle presque sûrement, lorsque n→∞ ?

3. Montrer que le minimum de n variables aléatoires i.i.d de loi uniforme sur [0, 1]
converge presque sûrement vers zéro, lorsque n → ∞ (ceci n’est pas la même
question que l’exercice 184 !).

* Exercice 190

Soit (Xn)n≥1 une suite de vecteurs aléatoires réels de taille d ≥ 1. On cherche à
montrer que (Xn)n≥1 converge en probabilité si et seulement si toute sous-suite admet
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une sous-suite qui converge en presque sûrement, et que la limite est nécessairement la
même.

1. Supposons que Xn converge en probabilité, vers un vecteur aléatoire qu’on note
X.

a) Pour tout entier p ≥ 1, montrer l’existence d’un entier n(p) tel que P (‖Xn(p)−
X‖ > 1/p) ≤ 2−p.

b) Montrer qu’on peut supposer que n(1) < n(2) < . . ..
c) Montrer que pour tout ε > 0,∑

p≥1

P (‖Xn(p) −X‖ > ε) <∞.

d) En déduire le sens direct de l’équivalence qu’on souhaite montrer.

2. Supposons que toute sous-suite de (Xn)n≥1 admet une sous-suite qui converge
presque sûrement.

a) Démontrer que la limite presque sûre ne dépend pas du choix de la sous-suite.
On notera X cette limite.

b) Supposons par l’absurde que Xn ne converge pas en probabilité vers X. Mon-
trer l’existence de deux réels α, ε > 0 et d’une sous-suite (Xφ(n))n≥1 tels que
P (‖Xφ(n) −X‖ > ε) ≥ α.

c) Conclure.

* Exercice 191 Conséquences de la loi du zéro/un de Kolmogorov

Soit (Xn)n≥1 une suite de variables aléatoires réelles indépendantes. Pour tout n ≥ 1,
on note An la tribu engendrée par Xn.

1. Les événements suivants sont-ils dans la tribu asymptotique A∞ (définie dans
l’exercice 31 ?

a) {ω ∈ Ω : (Xn(ω))n≥1 converge}
b) {ω ∈ Ω : Xn(ω) ≥ X1(ω) pour une infinité de valeurs de n}
c) {ω ∈ Ω : (Xn(ω))n≥1 est constante à partir d’un certain rang}
d) {ω ∈ Ω :

∑n
i=1 Xi(ω) ≥ 0 pour une infinité de valeurs de n}

e) {ω ∈ Ω : (
∑n

i=1Xi(ω))n≥1 converge}
f) {ω ∈ Ω : Xn(ω) 6= 0 pour une infinité de valeurs de n}
g) {ω ∈ Ω : (Xn(ω))n≥1 admet 0 comme valeur d’adhérence}
h) {Xn(ω) = a1, Xn+1(ω) = a2, . . . , Xn+p(ω) = ap}, où a1, . . . , ap ∈ IR sont des

nombres réels fixés, et p ≥ 1 est un entier donné.

2. Supposons que la suite (Xn)n≥1 converge presque sûrement, vers une variable
aléatoire réelle X. Montrer que X est A∞-mesurable, et qu’elle est donc presque
sûrement constante.
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* Exercice 192 Convergence en probabilité dans un espace métrique

Soit (M, d) un espace métrique, et soit (Xn)n≥1 une suite de variables aléatoires sur
M (muni de sa tribu borélienne). On suppose que Xn converge en probabilité vers une
variable aléatoire X, i.e., pour tout ε > 0, P (d(Xn, X) > ε) −−−→

n→∞
0. Soit (N, ρ) un

second espace métrique et soit g : M → N une application continue. On cherche à
montrer que g(Xn) converge alors en probabilité vers g(X). On fixe ε > 0 quelconque, et
on souhaite donc montrer que P (ρ(g(Xn), g(X)) > ε) −−−→

n→∞
0. Pour tout δ > 0, on pose

Bδ = {x ∈M : ∃y ∈M, d(x, y) > δ, ρ(g(x), g(y)) ≤ ε}.
1. Vérifier que

⋂
δ>0

Bδ = ∅.

2. En déduire (soigneusement !) que lim
δ→0

P (X ∈ Bδ) = 0.

3. Montrer que pour tout δ > 0 et pour tout n ≥ 1,

P (ρ(g(Xn), g(X)) > ε) ≤ P (d(Xn, X) > δ) + P (X ∈ Bδ).

4. Conclure.

7.2 Lois des grands nombres

Exercice 193 Lemme de Cesàro

Soit (un)n≥1 une suite de nombres réels. On suppose que un −−−→
n→∞

` ∈ IR. Montrer

que 1
n

∑n
i=1 ui −−−→n→∞

`. A l’aide d’un contre-exemple, montrer que la réciproque n’est pas

toujours vraie.

Exercice 194 Lemme de Kronecker

Soient (un)n≥1 une suite de nombres réels et (wn)n≥1 une suite croissante de réels telle
que wn −−−→

n→∞
∞. Montrer que si la série de terme général un converge, alors

1

wn

n∑
i=1

wiui −−−→
n→∞

0.

Exercice 195 Une loi faible des grands nombres

Soit (Xn)n≥1 une suite de variables aléatoires réelles indépendantes admettant un

moment d’ordre 2. Pour tout n ≥ 1, on pose mn = E[X1]+...+E[Xn]
n

. On suppose que pour
tout n ≥ 1, Var(Xn) ≤ σ2, où σ2 > 0 est un nombre fixé.
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1. Supposons que mn tend vers un certain nombre réel m. Montrer qu’alors, X̄n
P−−−→

n→∞
m (on pourra utiliser l’inégalité de Bienaymé Chebychev).

2. Supposons que E[Xn] tend vers un certain réel m. Montrer qu’alors, mn −−−→
n→∞

m

et que X̄n
P−−−→

n→∞
m.

3. Montrer qu’on a toujours X̄n −mn
P−−−→

n→∞
0.

Exercice 196 Une autre loi faible des grands nombres

Soit (Xn)n≥1 une suite de variables aléatoires réelles de carré intégrable. On suppose
que pour tout i, j ≥ 1 avec i 6= j, cov(Xi, Xj) = 0, et que 1

n2

∑n
i=1 Var(Xi) −−−→

n→∞
0.

Montrer qu’alors,
1

n

n∑
i=1

(Xi − E[Xi])
P−−−→

n→∞
0.

Exercice 197 Encore une loi faible des grands nombres

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d et intégrables. On cherche à
montrer que

X̄n
P−−−→

n→∞
E[X1].

Pour chaque n ≥ 1, on pose Yi = Xi − E[X1].

1. Montrer qu’il suffit de prouver que Ȳn
P−−−→

n→∞
0.

2. Pour chaque n ≥ 1, on pose Zn = Yn1|Yn|≤n.
a) Montrer que 1

n

∑n
i=1E[Zi] −−−→

n→∞
0.

b) Fixons n ≥ 1.
i – Montrer que pour tout i = 1, . . . , n, Var(Zi) ≤ E[X2

11|X1|≤n].
ii – Montrer que E[X2

11|X1|≤
√
n] ≤

√
nE[|X1|].

iii – Montrer que E[X2
11
√
n<|X1|≤n] ≤ nE[|X1|1|X1|>

√
n].

c) En déduire que

1

n2

n∑
i=1

Var(Zi) −−−→
n→∞

0.

d) A l’aide de l’exercice précédent, conclure que Z̄n
P−−−→

n→∞
0.

3. Il ne reste plus qu’à montrer que Ȳn − Z̄n
P−−−→

n→∞
0.

a) Montrer qu’avec probabilité 1, Yn = Zn pour tout n assez grand (on pourra
utiliser le résultat de l’exercice précédent).

b) En déduire que Ȳn − Z̄n
p.s−−−→

n→∞
0.
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c) Conclure.

Remarque. Dans l’exercice 203 plus bas, on montrera qu’on a en fait la convergence
presque sûre de X̄n vers E[X1], sous l’hypothèse que les Xn sont i.i.d.

Exercice 198 Le cas de la loi de Cauchy

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d de loi de Cauchy. On rappelle
que la loi de Cauchy est la loi absolument continue par rapport à la mesure de Lebesgue,
de densité donnée par f(x) = 1

π(x2+1)
, x ∈ IR. On admet que la fonction caractéristique

de cette loi est donnée par Φ(t) = e−|t|, t ∈ IR.

1. Montrer que pour tout n ≥ 1, X̄n suit la loi de Cauchy.

2. En déduire qu’il n’existe pas de nombre réel c tel que X̄n
P−−−→

n→∞
c.

Exercice 199 Inégalité de Kolmogorov

Soient X1, . . . , Xn (n ≥ 1) des variables aléatoires réelles indépendantes, centrées (i.e,
d’espérance nulle) admettant un moment d’ordre 2. Pour tout k = 1, . . . , n, on note
Sk =

∑k
i=1 Xi et on cherche à montrer l’inégalité suivante, pour tout ε > 0 :

P

(
max

1≤k≤n
|Sk| > ε

)
≤ 1

ε2

n∑
i=1

Var(Xi).

On note E l’événement {max1≤k≤n |Sk| > ε} et pour k = 1, . . . , n, on définit l’événement
Ek = {|Sk| > ε, |Si| ≤ ε,∀i = 1, . . . , k − 1} (E1 estsimplement l’événement {|S1| > ε}).

1. Vérifier que P (E) = P (E1) + . . .+ P (En).

2. Vérifier que pour tout k = 1, . . . , n, P (Ek) ≤ 1
ε2
E[1EkS

2
k ].

3. Fixons k ∈ {1, . . . , n}. On va montrer que E[1EkS
2
k ] ≤ E[1EkS

2
n].

a) Vérifier que

E[1EkS
2
n] = E[1EkE[(Sk +Xk+1 + . . .+Xn)2|(X1, . . . , Xk)]].

b) A l’aide du théorème de transfert conditionnel, en déduire l’inégalité recherchée.

4. Déduire des questions précédentes que P (E) ≤ 1
ε2

Var(Sn) et conclure.

Exercice 200 Séries de variables aléatoires

Soit (Xn)n≥1 une suite de variables aléatoires réelles indépendantes admettant un mo-
ment d’ordre 2, et satisfaisant E[Xn] = 0 pour tout n ≥ 1. Supposons que

∑∞
n=1 Var(Xi) <

∞. On souhaite montrer qu’alors, la série de terme général Xn converge presque sûrement,
i.e., Sn :=

∑n
i=1Xi converge presque sûrement, lorsque n → ∞. Pour chaque n ≥ 1, on

pose An = supk≥1 |Sn+k − Sn| et A = infn≥1An.
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1. Montrer qu’il est nécessaire et suffisant de vérifier que A = 0 p.s.

2. Vérifier que A = 0 p.s si et seulement si pour tout ε > 0, P (∀n ≥ 1, An > ε) = 0.

3. Soit ε > 0. Fixons n ≥ 1.
a) Montrer que

P (An > ε) = lim
r→∞

P ( max
1≤k≤r

|Sn+k − Sn| > ε).

b) En utilisant le résultat démontré dans l’exercice précédent, en déduire que

P (An > ε) ≤ 1

ε2

∞∑
k=n+1

Var(Xk).

4. En déduire que P (∀n ≥ 1, An > ε) = 0 et conclure.

Exercice 201 Une loi forte des grands nombres

Soit (Xn)n≥1 une suite de variables aléatoires réelles indépendantes et de carré intégrable.

On suppose que E[Xn] −−−→
n→∞

m ∈ IR et
∞∑
n=1

Var(Xn)

n2
<∞.

1. Pour tout n ≥ 1, soit Yn = Xn−E[Xn]
n

. Vérifier que la série de terme général Var(Yn)
converge.

2. En déduire que que X̄n
p.s−−−→

n→∞
m (on pourra utiliser l’exercice précédent ainsi que

les lemmes de Cesàro et de Kronecker démontrés dans les exercices 194) et 193.

* Exercice 202 Une preuve alternative de la loi forte des grands nombres pour des
variables i.i.d de carré intégrable

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d de carré intégrable. Pour
tout n ≥ 1, on note X̄n la moyenne empirique de X1, . . . , Xn. On cherche à montrer que
X̄n

p.s.−−−→
n→∞

E[X1].

1. Pour tout n ≥ 1, on note Yn = Xn−E[X1]. Montrer qu’il est nécessaire et suffisant

de montrer que Ȳn
p.s.−−−→
n→∞

0. Dans toute la suite, on note Sn =
∑n

i=1 Yi, pour tout

entier n ≥ 1, de sorte que Ȳn = Sn/n.

2. Vérifier que pour tout ε > 0, la série de terme général P (|Ȳn2| > ε) est convergente.

3. En déduire que Ȳn2
p.s.−−−→
n→∞

0 (on pourra utiliser les résultats de l’exercice 187).

4. Pour tout n ≥ 1, montrer l’existence d’un unique entier kn ≥ 1 tel que k2
n ≤ n <

(kn + 1)2.
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5. Vérifier que pour tout n ≥ 1,

|Ȳn| ≤ |Ȳk2
n
|+

maxj=k2
n,...,(kn+1)2−1 |Sj − Sk2

n
|

k2
n

.

6. En déduire qu’il est suffisant de montrer que
maxj=k2,...,(k+1)2−1 |Sj − Sk2|

k2

p.s.−−−→
k→∞

0.

7. Soit ε > 0. Montrer que la série de terme général P

(
maxj=k2,...,(k+1)2−1 |Sj − Sk2|

k2
> ε

)
,

k ≥ 1, est convergente (on pourra commencer par utiliser une borne d’union, puis
l’inégalité de Bienaymé-Chebychev).

8. Conclure.

Exercice 203 Encore une loi forte des grands nombres (Kolmogorov-Khintchine)

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d intégrables. On souhaite

montrer qu’alors, X̄n
p.s−−−→

n→∞
E[X1].

1. Vérifier que sans perte de généralité, on peut supposer (ce qu’on fera dans la suite)
que E[X1] = 0.

2. Pour tout n ≥ 1, on pose Yn = Xn1|Xn|≤n.
a) Vérifier qu’avec probabilité 1, Yn = Xn pour tout n assez grand.

b) En déduire qu’il est suffisant de montrer que Ȳn
p.s−−−→

n→∞
0.

3. Montrer que E[Yn] −−−→
n→∞

0.

4. Montrer que
∞∑
n=1

Var(Yn)

n2
≤ E

[
∞∑
n=1

1

n2
X2

11|X1|≤n

]
(on prendra soin de tout justifier).

5. Vérifier que pour tout n ≥ 1, X2
11|X1|≤n =

∑n
m=1 X

2
11m−1<|X1|≤m.

6. En déduire que

∞∑
n=1

1

n2
X2

11|X1|≤n ≤ |X1|
∞∑
m=1

m1m−1<|X1|≤m

∞∑
n=m

1

n2

(encore une fois, on prendra soin de tout justifier).

7. Vérifier que pour tout m ≥ 1,
∞∑
n=m

1

n2
≤ 2

m
.

71



8. Déduire des questions précédentes que

∞∑
n=1

Var(Yn)

n2
≤ 2E[|X1|].

9. Conclure à l’aide de l’exercice précédent.

Exercice 204 La réciproque de la loi de Kolmogorov-Khintchine

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. On suppose que X̄n converge
presque sûrement, vers une variable aléatoire qu’on note Z dans la suite.

1. Vérifier que Xn
n

p.s−−−→
n→∞

0 (on remarquera que Xn
n

= X̄n − n−1
n
X̄n−1).

2. En déduire que X1 est intégrable (cela est démontré dans l’exercice 188) et que
Z = E[X1] preque sûrement.

Exercice 205

Soit (Xn)n≥1 une suite de variables aléatoires indépendantes. Pour tout n ≥ 1, on
suppose que P (Xn = 0) = 1− 1

n log(n+1)
et P (Xn = n) = P (Xn = −n) = 1

2n log(n+1)
.

1. Vérifier que les Xn sont intégrables et centrées.

2. Montrer que X̄n
P−−−→

n→∞
0.

3. On va montrer qu’en revanche, X̄n ne converge pas presque sûrement vers 0.
a) A l’aide du théorème de Borel-Cantelli, montrer qu’avec probabilité 1, |Xn| =
n infiniment souvent.

b) En déduire que Xn
n

ne converge pas presque sûrement vers 0.
c) Conclure.

Exercice 206

Soit f : [0, 1]→ IR une fonction continue. Calculer la limite, lorsque n→∞, de∫
[0,1]n

f

(
x1 + . . .+ xn

n

)
dx1 . . . dxn.

Exercice 207

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d, de carré intégrable. Pour

tout n ≥ 1, on note X̄n =
1

n

n∑
i=1

Xi la moyenne empirique de X1, . . . , Xn, et Vn =

1

n

n∑
i=1

(Xi − X̄n)2 leur variance empirique.

Etudier la convergence presque sûre de X̄n et Vn, lorsque n→∞.
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Exercice 208

On considère un pécheur, qui, toute sa vie, va pêcher dans la même rivière, contenant
deux espèces de poissons: des carpes et des truites. Chaque jour, le pêcheur reste sur sa
barque, à pêcher, jusqu’à ce qu’il attrape une truite. On suppose qu’à chaque prise, il y a
autant de chances qu’il s’agisse d’une carpe que d’une truite. On note n le nombre total
de jours où le pêcheur s’en est allé pêcher et, pour i = 1, . . . , n, on note Xi le nombre de
poissons attrapés par le pêcheur le jour numéro i, c’est-à-dire, le nombre de poissons qu’il
lui a fallu attraper avant de pêcher une truite, la truite étant incluse dans le compte.

1. Quelle est la loi de X1 ?

2. A la fin de sa vie, le pêcheur aura-t-il pêché significativement plus de carpes, ou
de truites ?

Exercice 209

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d, de carré intégrable. Etudier

la convergence presque sûre de
X1X2 +X2X3 + . . .+Xn−1Xn

n
.

* Exercice 210 Une réciproque à la loi forte des grands nombres

Soit (Xn)n≥1 une suite de variables aléatoires réelles i.i.d. Pour tout n ≥ 1, soit X̄n la
moyenne empirique de X1, . . . , Xn.

1. A l’aide de l’exercice 191, montrer que P ({ω ∈ Ω : X̄n(ω) converge}) = 0 ou 1 et
que si X̄n converge presque sûrement, sa limite est nécessairement une constante.

2. Montrer que X̄n converge presque sûrement si et seulement si X1 admet un moment
d’ordre 1, qui est alors la limite presque sûre de X̄n (on pourra montrer que si X̄n

converge presque sûrement, alorsXn/n converge presque sûrement vers 0, et utiliser
le résultat de l’exercice 188).

Exercice 211 Régression linéaire

Soient X et Y deux variables aléatoires réelles, de carré intégrable. On suppose
Var(X) 6= 0.

1. Montrer que a∗ =
cov(X, Y )

Var(X)
et b∗ = E[Y ]− cov(X, Y )

Var(X)
E[X] sont les uniques réels

qui minimisent la fonction (a, b) ∈ IR2 7→ E[(Y − aX − b)2].

2. Montrer qu’on peut écrire Y = a∗X + b∗ + ε, où ε est une variable aléatoire réelle
de carré intégrable, satisfaisant E[ε] = 0 et cov(ε,X) = 0.

3. Montrer que, réciproquement, si a et b sont deux nombres réels tels que, en posant
ε = Y − (aX + b), on a E[ε] = 0 et cov(ε,X) = 0, alors a = a∗ et b = b∗.
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4. Soit
(
(Xn, Yn)

)
n≥1

une suite de vecteurs aléatoires i.i.d de même loi que le vecteur

(X, Y ). Pour tout entier n ≥ 1, on définit le couple (ân, b̂n) comme un minimiseur
de la fonction

(a, b) ∈ IR2 7→ 1

n

n∑
i=1

(Yi − aXi − bi)2.

a) Montrer qu’avec probabilité un, la suite (Xn)n≥1 n’est pas constante.

b) En déduire qu’avec probabilité un, le couple (ân, b̂n) est unique pour n assez
grand, et le calculer.

c) Montrer que le couple (ân, b̂n) converge presque sûrement vers (a∗, b∗) lorsque
n→∞.

8 Convergence en loi et théorème de la limite cen-

trale

8.1 Convergence en loi

Exercice 212

Soit (Xn)n≥1 une suite de variables aléatoires réelles, convergent en distribution vers
une variable aléatoire réelle X supposée continue. Montrer les assertions suivantes:

1. Pour tout t ∈ IR, P (Xn > t) −−−→
n→∞

P (X > t).

2. Pour tout t ∈ IR, P (Xn < t) −−−→
n→∞

P (X < t).

3. Pour tous a, b ∈ IR tels que a < b, P (a < Xn < b) −−−→
n→∞

P (a < X < b).

4. Pour tous a, b ∈ IR tels que a < b, P (a ≤ Xn < b) −−−→
n→∞

P (a ≤ X < b).

5. Pour tout t ∈ IR, P (|Xn| ≤ t) −−−→
n→∞

P (|X| ≤ t).

Exercice 213

Pour tout n ≥ 1, soit Xn une variable aléatoire réelle satisfaisant P (Xn = 0) = 1−1/n
et P (Xn = n2) = 1/n.

1. Montrer que Xn
(d)−−−→

n→∞
0.

2. Qu’en est-il de la suite E[Xn] ?

Exercice 214

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi uniforme sur [0, 1]. Montrer
que la suite (nmin(X1, . . . , Xn))n≥1 converge en loi, vers une loi limite qu’on déterminera.
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Exercice 215

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi exponentielle de paramètre
1. Pour tout n ≥ 1, on note Mn = max(X1, . . . , Xn). Déterminer une suite réelle (an)n≥1

telle que Mn− an converge en loi, lorsque n→∞, vers une distribution qu’on identifiera.

Exercice 216

Soient X1, X2, . . . des variables aléatoires réelles i.i.d de loi de Cauchy.

1. Vérifier que X1 n’admet pas de moment d’ordre 1.

2. On admet que la fonction caractéristique de X1 est donnée par Φ(t) = e−|t|, pour
tout t ∈ IR.

a) Déterminer la loi de X̄n, pour tout n ≥ 1.
b) En déduire que X̄n ne converge pas en probabilité vers une constante.
c) Soit (an)n→∞ une suite strictement positive satisfaisant an/n −−−→

n→∞
∞. Mon-

trer que
X1 + . . .+Xn

an

P−→ 0.

Exercice 217 Loi des petits nombres

Démontrer la loi des petits nombres : si, pour tout n ≥ 1 assez grand, Xn suit la loi
binomiale de paramètres n et λ/n, où λ > 0, alors Xn converge en distribution vers la loi
de Poisson de paramètre λ.

Exercice 218

Soit λ > 0. Pour tout entier n ≥ λ, soit (Xk,n)k≥1 une suite de variables aléatoires
i.i.d de loi de Bernoulli de paramètre λ/n. Pour n ≥ 1, soit Nn = inf{k ≥ 1 : Xk,n = 1}.

1. Montrer que presque sûrement, pour tout n ≥ λ, Nn <∞.

2. Vérifier que Nn/n converge en distribution, lorsque n → ∞, vers une loi qu’on
déterminera.

Exercice 219

Soient (µn)n≥1 une suite de nombres réels et (σ2
n)n≥1 une suite de nombres réels stricte-

ment positifs. Soient aussi µ ∈ IR et σ2 > 0. Pour tout n ≥ 1, soit Xn une variable
aléatoire de loi N (µn, σ

2
n).

1. Montrer que Xn
(d)−−−→

n→∞
N (µ, σ2) si et seulement si µn −−−→

n→∞
µ et σ2

n −−−→
n→∞

σ2.

2. Montrer que Xn converge en distribution vers µ si et seulement si µn −−−→
n→∞

µ et

σ2
n −−−→

n→∞
0.

3. Montrer que si σ2
n −−−→

n→∞
∞, alors la suite Xn ne converge pas en distribution.
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Exercice 220

Soient (Xn)n≥1 et (Yn)n≥1 deux suites de vecteurs aléatoires réels. On suppose que

Xn
(d)−−−→

n→∞
X et Yn

(d)−−−→
n→∞

Y , où X et Y sont deux vecteurs aléatoires donnés. On suppose

de plus que pour tout n ≥ 1, Xn et Yn sont indépendants. Déterminer la limite en
distribution de la suite de vecteurs aléatoires ((Xn, Yn))n≥1.

Exercice 221

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de Bernoulli de paramètre 1/2, et

soit Z =
∞∑
n=1

Xn

2n
. On cherche à déterminer la loi de Z.

1. Montrer que la variable aléatoire Z est bien définie de manière non ambiguë sur
un événement de probabilité 1.

2. Pour tout n ≥ 1, on pose Zn =
n∑
k=1

Xk

2k
.

a) Montrer que Zn converge presque sûrement vers Z, lorsque n→∞.
b) Pour tout n ≥ 1, déterminer la fonction caractéristique de Zn, en tout réel
t /∈ 2πZ.

c) En déduire la fonction caractéristique de Z, puis la loi de Z.

Exercice 222

Soit X une variable aléatoire réelle.

1. Supposons que X suit la loi exponentielle de paramètre λ > 0. Pour chaque entier
n ≥ 1, déterminer la loi de bnXc.

2. Supposons à présent que pour tout entier n ≥ 1, bnXc suit la loi géométrique de
paramètre 1− e−λ/n, pour un certain λ > 0.

a) Vérifier que n−1bnXc converge presque sûrement vers X.
b) Pour chaque n ≥ 1, déterminer la fonction de répartition de n−1bnXc.
c) En déduire que X suit la loi exponentielle de paramètre λ.

* Exercice 223

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi uniforme sur [0, 1]. Pour tout
n ≥ 1, on note Yn la médiane empirique de l’échantillon X1, X2, . . . , X2n+1 (i.e., une fois
ces 2n+ 1 variables rangées dans l’ordre, on prend celle du milieu de la liste).

1. Montrer que pour tout n ≥ 1, Yn admet une densité, et la calculer.

2. En utilisant le théorème de Scheffé, montrer que 2
√

2n
(
Yn − 1

2

)
converge en loi,

vers une loi limite qu’on déterminera.
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Indice: on pourra utiliser la formule de Stirling:

lim
n→∞

(
n
e

)n√
2πn

n!
= 1.

Exercice 224

Soient d ≥ 1 et X(d) un vecteur aléatoire de taille d, uniformément distribué dans la
boule euclidienne centrée en 0 et de rayon

√
d. Montrer que

X
(d)
1

(d)−−−→
d→∞

N (0, 1)

(cf. exercice 79).

8.2 Théorème de la limite centrale

Exercice 225

Pour tout n ≥ 1, soit Xn une variable aléatoire de loi de Poisson de paramètre n.

1. Montrer que Xn−n√
n

(d)−−−→
n→∞

N (0, 1).

2. En déduire que e−n
n∑
k=1

nk

k!
−−−→
n→∞

1

2
.

Exercice 226

Soit P une mesure de probabilité sur (IR,B(IR)) admettant deux moments et telle que,
si X1 et X2 sont deux variables aléatoires i.i.d de loi P , alors X1+X2√

2
suit la loi P . On

cherche à montrer que nécessairement, P est une loi normale centrée.

1. Vérifier que le premier moment de P est nul.

2. Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi P .
a) Vérifier que pour tout n ≥ 1, X1+...+X2n√

2n
suit la loi P .

b) Conclure.

Exercice 227 Un modèle multinomial

Soit E un ensemble fini à K éléments, où K ∈ IN∗. On note a1, . . . , aK ses éléments.
Soit (Xn)n≥1 une suite de variables aléatoires i.i.d à valeurs dans E. Pour tout n ≥ 1 et
k = 1, . . . , K, on note

p̂(k)
n =

1

n

n∑
i=1

1Xi=ak

et p̂n = (p̂
(1)
n , . . . , p̂

(K)
n ). On suppose que pour tout k = 1, . . . , K, P (X1 = ak) > 0.
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1. Montrer que p̂n converge presque sûrement vers un vecteur p ∈ IRK que l’on
déterminera, lorsque n→∞.

2. Montrer que
√
n(p̂n − p)

(d)−−−→
n→∞

Nd(0,Σ), où Σ est une matrice qu’on déterminera.

3. On note Q la matrice diagonale dont les éléments diagonaux sont les racines carrées
des coordonnées de p. Vérifier que Σ peut s’écrire comme QPQ, où P est une
matrice de projection orthogonale de rang K − 1.

4. En déduire que n
∑K

k=1
(p̂

(k)
n −p(k))2

p(k) converge en distribution vers une loi du χ2, dont
on déterminera le nombre de degrés de libertés.

Exercice 228

Soient X1, X2, . . . des variables aléatoires réelles i.i.d de carré intégrable. Pour n ≥ 1,
soit Zn =

√
n X̄n−µ

σ
, où µ = E[X1] et σ =

√
Var(X1). En utilisant les résultats des

exercices 31 et 191, montrer que Zn ne converge pas en probabilité lorsque n→∞.

8.3 Intervalles de confiance

Dans cette partie, on s’intéresse à la construction d’intervalles de confiance, souvent
utilisés en statistique. Etant donnée une suite de variables aléatoires i.i.d suivant une
loi paramétrée par un réel θ, une suite d’intervalles de confiance de niveau asymptotique
α ∈ (0, 1) est une suite d’intervalles aléatoires (In)n≥1, dont la construction ne dépend pas
de la valeur de θ, tels que pour chaque n ≥ 1, In dépend de X1, . . . , Xn et qui satisfont
P (In 3 θ) −−−→

n→∞
1− α.

Exercice 229 Rappels sur les quantiles

Soit X une variable aléatoire réelle. Pour tout α ∈ (0, 1), on appelle quantile d’ordre
α de X (ou de la loi de X) tout réel q satisfaisant P (X ≤ q) ≥ α et P (X ≥ q) ≥ 1 − α
(on pourra revoir l’exercice 86). Supposons ici que X suit la loi normale centrée réduite.

1. Montrer que pour tout α ∈ (0, 1), X a un unique quantile d’ordre α, donné par
l’unique réel q satisfaisant Φ(q) = α, où Φ est la fonction de répartition de X.
Dans la suite, on note qα le quantile d’ordre α de X.

2. Vérifier que pour tout t ∈ IR, Φ(−t) = 1− Φ(t).

3. En déduire que pour tout t ≥ 0,

P (|Z| ≤ t) = 2Φ(t)− 1.

4. En déduire que pour tout α ∈ (0, 1), l’unique réel t satisfaisant P (|Z| ≤ t) = 1−α
est t = q1−α

2
.

5. A l’aide de la Table se trouvant page 92, déterminer une valeur approchée des
quantiles d’ordre 90%, 95% et 97.5% de la loi normale centrée réduite.
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Exercice 230

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi de Poisson de paramètre
λ > 0. Pour tout n ≥ 1, on note X̄n la moyenne empirique de X1, . . . , Xn.

1. a) Montrer que pour tout t ≥ 0,

P (|X̄n − λ| ≤ t
√
λ/
√
n) −−−→

n→∞
P (|Z| ≤ t),

où Z est une variable aléatoire réelle de loi normale centrée réduite.
b) Soit t ≥ 0. Montrer que l’événement |X̄n − λ| ≤ t

√
λ/
√
n est équivalent à

In(t) 3 λ, où In(t) est un intervalle dont l’expression ne dépend pas de λ, et
qu’on déterminera Indication : il faudra résoudre une inéquation du second
degré en λ).

c) En déduire l’expression d’une suite d’intervalles de confiance de niveau asymp-
totique α.

2. a) Montrer que X̄n + 1/n converge en probabilité vers une constante.
b) En déduire que

√
n

X̄n − λ√
X̄n + 1/n

(d)−−−→
n→∞

N (0, 1)

(on utilisera le théorème de Slutsky).
c) En déduire que pour tout t ≥ 0,

P

(
|X̄n − λ| ≤

t
√
X̄n + 1/n√

n

)
−−−→
n→∞

P (|Z| ≤ t),

où Z est à nouveau une variable aléatoire réelle de loi normale centrée réduite
(on utilisera le théorème de Slutsky).

d) En déduire l’expression d’une suite d’intervalles de confiance de niveau asymp-
totique α.

3. Pour les deux suites d’intervalles de confiance définies précédemment, indiquer à
quelle vitesse leurs longueurs tend presque sûrement vers zéro, lorsque n→∞.

Exercice 231

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi exponentielle de paramètre
λ > 0.

1. Pour tout α ∈ (0, 1), trouver un intervalle de confiance de niveau asymptotique α
pour λ, i.e., trouver une suite d’intervalles aléatoires (In)n≥1, qui ne dépendent pas
de λ, et tels que P (In 3 λ) −−−→

n→∞
1− α.

De même que dans l’exercice précédent, on procèdera de deux manières différentes:
sans utiliser le théorème de Slutsky, puis en l’utilisant.
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Exercice 232

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d de loi de Bernoulli de paramètre
p ∈]0, 1[.

1. Pour tout α ∈]0, 1[, trouver un intervalle de confiance de niveau asymptotique α
pour p, i.e., trouver une suite d’intervalles aléatoires (In)n≥1, qui ne dépendent pas
de p, et tels que P (In 3 p) −−−→

n→∞
1− α.

A nouveau, on procèdera de deux manières différentes: sans utiliser le théorème
de Slutsky, puis en l’utilisant.

Exercice 233

Soit f(x) =
C√
θ − x

10<x<θ, pour tout x ∈ IR, où θ > 0 est un nombre réel fixé et C

est un nombre réel.

1. Déterminer la valeur de C, en fonction de θ, de sorte que f soit une densité par
rapport à la mesure de Lebesgue.

Dans la suite, on prend cette valeur de C, et on considère une suite (Xn)n≥1 de
variables aléatoires i.i.d admettant f comme densité par rapport à la mesure de
Lebesgue.

2. Calculer la limite presque sûre de X̄n, lorsque n→∞.

3. Déterminer deux réels a et b, qui ne dépendent pas de θ, tels que
√
n X̄n−aθ

bθ
converge

en distribution vers la loi normale centrée réduite.

4. Soit α ∈ (0, 1). Déduire de la question précédente une suite d’intervalles de con-
fiance de niveau asymptotique α pour θ, i.e., une suite d’intervalles (In)n≥1 telle
que pour tout n ≥ 1, In ne dépend que de X1, . . . , Xn et ne dépend pas de θ, et
satisfaisant P (In 3 θ) −−−→

n→∞
1 − α (pour tout β ∈ (0, 1), on notera qβ le quantile

d’ordre β de la loi normale centrée réduite).

5. Pour tout n ≥ 1, on pose Mn = max(X1, . . . , Xn).
a) Vérifier que Mn ≤ θ presque sûrement.

b) Déterminer la fonction de répartition de n2 θ −Mn

θ
(on rappelle qu’une fonc-

tion de répartition est définie sur IR tout entier).

6. En déduire que n2 θ −Mn

θ
converge en distribution, vers une loi dont on donnera

la fonction de répartition.

7. Soit α ∈ (0, 1). Déduire de la question précédente une suite d’intervalles de confi-
ance de niveau asymptotique α pour θ.

8. Comparer la précision de cet intervalle de confiance avec celui obtenu à l’aide du
théorème de la limite centrale, à la question 4. Commenter.
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9. Soit n ≥ 1. A l’aide du calcul de la fonction de répartition de n2 θ −Mn

θ
, pro-

poser un intervalle de confiance de niveau non-asymptotique α pour θ, i.e., un
intervalle In ne dépendant que de X1, . . . , Xn, et non de θ, et satisfaisant l’égalité

P (In 3 θ) = 1− α.

9 Vecteurs gaussiens

9.1 Rappels d’algèbre linéaire

Dans les exercices de cette partie, d ≥ 1 est un entier.

Exercice 234 Rappels sur les matrices symétriques

1. Soit A ∈ IRd×d une matrice symétrique. Montrer qu’elle est diagonalisable avec
matrice de passage pouvant être choisie orthogonale, i.e., qu’il existe une matrice
diagonale D et une matrice orthogonale P telles que A = PDP>.

2. Soit A ∈ IRd×d une matrice symétrique. Montrer que les assertions suivantes sont
équivalentes :

(i) A est une matrice de projection (i.e., A2 = A)

(ii) Toutes les valeurs propres de A valent 0 ou 1.

3. Soit A ∈ IRd×d. Montrer que A est la matrice d’une projection orthogonale si et
seulement si A est symétrique et A2 = A. On rappelle qu’une projection orthog-
onale est une application linéaire u : IRd → IRd satisfaisant u ◦ u = u et dont le
noyau et l’image sont orthogonaux.

4. Soit A ∈ IRd×d une matrice symétrique. Montrer que A est semi-définie positive
(i.e., x>Ax ≥ 0 pour tout x ∈ IRd) si et seulement si toutes ses valeurs propres
sont positives ou nulles.

5. Soit A ∈ IRd×d une matrice symétrique. Montrer que les assertions suivantes sont
équivalentes :

(i) A est définie positive (i.e., x>Ax > 0 pour tout x ∈ IRd \ {0})
(ii) A est semi-définie positive et inversible

(iii) Toutes les valeurs propres de A sont strictement positives.

Exercice 235 Matrices de projection

On rappelle qu’une matrice P ∈ IRd×d est une matrice de projection si et seulement
si P 2 = P . Si de plus, l’image et le noyau de P sont orthogonaux, on dit que P est une
matrice de projection orthogonale.
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1. Soit P ∈ IRd×d.
a) Montrer que P est une matrice de projection si et seulement si Id−P est une

matrice de projection.
b) Dans ce cas, montrer que ker(P ) = Im(Id − P ) et ker(Id − P ) = Im(P ).
c) En particulier, vérifier que rang(Id − P ) = d− rang(P ).

2. Soit P ∈ IRd×d.
a) Montrer que P est une matrice de projection orthogonale si et seulement si
Id − P est une matrice de projection orthogonale.

3. Vérifier que si P est une matrice de projection, alors Tr(P ) = rang(P ).

4. Montrer qu’une matrice P ∈ IRd×d est une matrice de projection orthogonale si et
seulement si P 2 = P = P>.

5. Montrer qu’une matrice de projection orthogonale est toujours une matrice symétrique
semi-définie positive.

6. Montrer que la seule matrice de projection orthogonale définie positive est la ma-
trice identité.

7. Soit u ∈ IRd.
a) Montrer que uu> est une matrice de projection orthogonale si et seulement si
u = 0 ou ‖u‖ = 1.

b) Dans ce cas, déterminer le noyau et l’image de cette matrice de projection or-
thogonale, ainsi que le noyau et l’image de la matrice de projection orthogonale
Id − uu>.

Exercice 236 Une caractérisation des matrices carrées de rang 1

1. Soit A ∈ IRd×d.
a) Montrer que A est de rang 1 si et seulement s’il existe u, v ∈ IRd non nuls tels

que A = uv>.
b) Vérifier que, dans ce cas, Tr(A) = u>v.

2. Soit A ∈ IRd×d une matrice symétrique.
a) Montrer que A est de rang 1 si et seulement s’il existe u ∈ IRd non nul tel que
A = uu> ou A = −uu>.

b) Montrer que si de plus, A est semi-définie positive, alors A est de rang 1 si et
seulement s’il existe u ∈ IRd non nul tel que A = uu>.

c) Dans le cas de la question précédente, vérifier que A est une matrice de pro-
jection orthogonale si et seulement si ‖u‖2 = 1.

Exercice 237 Racines d’une matrice

Soit A ∈ IRd×d une matrice symétrique semi-définie positive.

1. Montrer l’existence d’une matrice M ∈ IRd×d satisfaisant MM> = A. Cette ma-
trice est-elle unique ?
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2. Soit r le rang de A. Montrer l’existence d’une matrice M ∈ IRd×r satisfaisant
MM> = A.

3. Montrer l’existence et l’unicité d’une matrice M ∈ IRd×d symétrique et semi-définie
positive telle que A = M2. On note A1/2 cette matrice.

4. Supposons dans cette question que A est définie positive.
a) Vérifier que A1/2 est définie positive.
b) Montrer que (A1/2)−1 = (A−1)1/2 (qu’on note alors, sans ambigüıté, A−1/2).

Exercice 238

Soit Σ ∈ IRd×d une matrice symétrique semi-définie positive.

1. Montrer l’existence d’une matrice A ∈ IRd×d et d’un entier r ∈ {1, . . . , d} tel que
AΣA> = Ir,d, où Ir,d ∈ IRd×d est la matrice diagonale dont les r premiers coefficients
diagonaux valent 1 et tous les autres sont nuls.

2. Montrer l’existence d’une matrice B ∈ IRr×d telle que BΣB> = Ir, la matrice
identité de taille r.

3. Vérifier que r est le rang de Σ.

4. Vérifier que si Σ est inversible, alors r = d et on peut prendre A = Σ−1/2.

Exercice 239 Rang d’une matrice

Dans cet exercice, p, q, r ≥ 1 sont des entiers fixés.

1. Montrer que pour toute A ∈ IRp×q, rang(A>) = rang(A).

2. Montrer que pour toute A ∈ IRp×q et pour tout λ ∈ IR \ {0}, rang(λA) = rang(A).

3. Montrer que pour toutes matrices A,B ∈ IRp×q, rang(A+B) ≤ rang(A)+rang(B).

4. Soient A ∈ IRp×q et B ∈ IRq×r. Montrer que rang(AB) ≤ min(rang(A), rang(B)).

Exercice 240

Soit M ∈ IRp×q, où p, q ≥ 1.

1. Vérifier que rang(M) ≤ min(p, q).

2. Vérifier que MM> est inversible si et seulement si rang(M) = p (ce qui requiert
nécessairement que p ≤ q).

3. Vérifier que M>M est inversible si et seulement si rang(M) = q (ce qui requiert
nécessairement que q ≤ p).

9.2 Vecteurs gaussiens

Dans cette partie, d ≥ 1 est un entier et on note Sd l’ensemble des matrices symétriques
réelles de taille d, S+

d l’ensemble de celles qui sont semi-définies positives et S++
d l’ensemble

de celles qui sont définies positives.
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Exercice 241

Soient X1, X2, X3 des variables aléatoires réelles i.i.d de loi normale centrée réduite.
Déterminer la loi du vecteur aléatoire (X1, X1 +X2, X1 +X2 +X3). Ce vecteur admet-il
une densité par rapport à la mesure de Lebesgue ?

Exercice 242 Support d’une loi normale

Soient µ ∈ IRd et Σ ∈ S+
d . En fonction de µ et de Σ, déterminer le support de Nd(µ,Σ)

(cf. Exercice 35).

Exercice 243

Soient X1, . . . , Xn des variables aléatoires gaussiennes indépendantes (n ∈ IN∗). Pour
i = 1, . . . , n, on note µi la moyenne de Xi et σ2

i sa variance. Pour tous réels a1, . . . , an, b,
déterminer la loi de a1X1 + . . .+ anXn + b.

Exercice 244

1. Soient X1, . . . , Xn des vecteurs aléatoires réels indépendants de taille d ≥ 1, avec
n ∈ IN∗. On suppose que les Xi sont de carré intégrable, et on note µ1, . . . , µn leurs
espérances respectives ainsi que Σ1, . . . ,Σn leurs matrices de variance-covariance
respectives. Pour toutes matrices A1, . . . , An ∈ IRp×d et tout vecteur b ∈ IRp, où
p ≥ 1, déterminer l’espérance et la matrice de variance-covariance de A1X1 + . . .+
AnXn + b.

2. Soient X1, . . . , Xn des vecteurs aléatoires gaussiens indépendants de taille d ≥ 1.
Pour i = 1, . . . , n, on note µi l’espérance de Xi et Σi sa matrice de variance-
covariance.

a) Vérifier que le vecteur (X1, . . . , Xn), de taille nd, est un vecteur gaussien.
b) A l’aide de la question 1, en déduire la loi de A1X1 + . . . + AnXn + b, pour

toutes matrices A1, . . . , An ∈ IRp×d et tout vecteur b ∈ IRp, où p ≥ 1.

3. Retrouver le résultat de la question précédente à l’aide des fonctions caractéristiques.

Exercice 245 Produit des composantes d’un vecteur gaussien

Soit X un vecteur gaussien centré de taille d ≥ 1, dont on note les coordonnées
X1, . . . , Xd. Le but de l’exercice est de trouver une formule pour E[X1X2 . . . Xd].

1. Vérifier que si d est impair, E[X1X2 . . . Xd] = 0.

2. Dans cette question, on suppose que d est pair, et on note p = d/2. Soit F (v) =
E[ev

>X ], pour tout v ∈ IRd.
a) Vérifier que pour tout v ∈ IRd, F (v) est bien défini qu’on a l’identité F (v) =
e(1/2)v>Σv, où Σ est la matrice de variance-covariance de X.
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b) Montrer que la fonction F ainsi définie est de classe C∞ sur IRd et qu’on a
l’égalité

E[X1 . . . Xd] =
∂dF

∂v1 . . . ∂vd
(0).

c) On appelle un appariement de {1, . . . , 2p} tout ensemble de la forme {(i1, i2), (i3, i4), . . . , (i2p−1, i2p)}
où i1, i2, . . . , i2p sont deux à deux distincts et i1 < i2, i3 < i4, . . . , i2p−1 < i2p.
On note Ap l’ensemble des appariements de {1, . . . , 2p} (on rappelle que
d = 2p). Montrer, à l’aide des questions précédentes, que

E[X1 . . . X2p] =
∑
A∈Ap

∏
(i,j)∈A

cov(Xi, Xj)

(indication : on pourra écrire F (v) =
∞∑
k=0

(v>Σv)k

k!
pour tout v ∈ IRd, et

montrer que seul le terme correspondant à k = p contribue à la d-ème dérivée
partielle en 0 de F par rapport à v1, . . . , vd).

Exercice 246 Calcul de la fonction caractéristique d’un vecteur gaussien

Soit X ∼ Nd(µ,Σ), où d ≥ 1, µ ∈ IRd et Σ ∈ S+
d .

1. Vérifier que pour tout v ∈ IRd, E[eiv
>X ] = eiv

>µE[eiv
>Y ] où Y ∼ Nd(0,Σ).

2. Soit v ∈ IRd. A l’aide de l’exercice précédent, vérifier que pour tout entier k ≥ 1,

E[(v>Y )k] =

{
0 si k est impair
(2p)!
2pp!

(v>Σv)p si k est pair, avec p = k/2.

3. En déduire que pour tout v ∈ IRd, E[eiv
>X ] = eiv

>µ− v
>Σv
2 .

Exercice 247 Des variables aléatoires gaussiennes de covariance nulle, mais non indépendantes
(1)

Soit X une variable aléatoire réelle gaussienne, centrée réduite et c > 0. On définit la
variable aléatoire

Xc =

{
X si |X| ≤ c

−X sinon.

1. Déterminer la loi de Xc.

2. Montrer que le vecteur (X,Xc) n’est pas un vecteur gaussien.

3. Montrer que X et Xc ne sont pas indépendantes.

4. Montrer que pourtant, il existe une valeur de c telle que cov(X,Xc) = 0.
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Exercice 248 Des variables aléatoires gaussiennes de covariance nulle, mais non indépendantes
(2)

Soit X une variable aléatoire réelle de loi normale centrée réduite et ε une variable
aléatoire indépendante de X satisfaisant P (ε = 1) = P (ε = −1) = 1/2. On pose Y = εX.

1. Vérifier que Y ∼ N (0, 1).

2. Vérifier que cov(X, Y ) = 0.

3. Vérifier que X et Y ne sont pas indépendantes.

4. En déduire que le vecteur (X, Y ) n’est pas un vecteur gaussien, et retrouver ce
résultat à l’aide d’un second raisonnement.

Exercice 249

Soit (X1, X2, X3) un vecteur aléatoire réel de taille 3, continu, et de densité donnée
par

f(x1, x2, x3) = C exp

(
−1

2
(3x2

1 + 2x2
2 + x2

3 + 4x1x2 − 2x1x3 − 2x2x3)

)
, ∀(x1, x2, x3) ∈ IR3,

où C est un nombre positif.

1. Déterminer la loi de (X1, X2, X3).

2. Chercher deux nombres réels a et b tels que aX1+bX2 soit indépendant de (X1, X3).

Exercice 250

Soient X1, X2, X3 trois variables aléatoires réelles i.i.d normales centrées réduites. On
pose S = X1 +X2 +X3 et V = (X1 −X2)2 + (X1 −X3)2 + (X2 −X3)2.

1. Déterminer la loi de S.

2. Montrer que S et V sont indépendantes.

3. Chercher un nombre strictement positif C tel que CV suit une loi du χ2, dont on
précisera le nombre de degrés de liberté.

Exercice 251

Soit (X, Y ) un couple aléatoire continu de densité donnée par

f(x, y) =
1

π
(1x,y>0 + 1x,y<0)e−

x2+y2

2 , ∀(x, y) ∈ IR2.

1. Démontrer que X et Y sont toutes les deux Gaussiennes centrées réduites.

2. Montrer en revanche que (X, Y ) ne suit pas une loi normale.

3. Calculer la covariance entre X et Y .

4. X et Y sont-elles indépendantes ?
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Exercice 252

Soit X ∼ Nd(µ,Σ), où µ ∈ IRd et Σ ∈ S+
d .

1. Montrer l’existence d’un entier r ≥ 1 et d’une matrice A ∈ IRr×d tels que A(X −
µ) ∼ Nr(0, Ir).

2. En déduire que (X − µ)>A>A(X − µ) ∼ χ2
r.

Exercice 253

Soit (Xn)n≥1 une suite de vecteurs aléatoires réels i.i.d de carré intégrable. Montrer
l’existence d’un entier r ≥ 1, d’une matrice M ∈ IRr×d et d’un vecteur b ∈ IRd tels que

n(X̄n − b)>M(X̄n − b)
(d)−−−→

n→∞
χ2
r.

Exercice 254

Soit X ∼ Nd(µ, Id), où µ ∈ IRd. Soit P ∈ IRd×d une matrice de projection orthogonale.
Montrer que PX et (Id − P )X sont indépendants.

Exercice 255 Régression linéaire

Soient x1, . . . , xn des vecteurs fixés de taille d (n ≥ 1). Pour i = 1, . . . , n, soit Yi =
x>i β + εi, où β ∈ IRd et ε1, . . . , εn sont des variables aléatoires i.i.d de loi N (0, σ2), avec
σ2 > 0. Dans cet exercice, on suppose que Y1, . . . , Yn sont des données observées, et
que les vecteurs x1, . . . , xn sont connus. En revanche, les variables ε1, . . . , εn ne sont pas
observées (on les appelle variables de bruit). Enfin, le vecteur β est inconnu, et on cherche
à l’estimer à l’aide des observations.

1. On pose Y le vecteur aléatoire de taille n dont les coordonnées sont Y1, . . . , Yn.
Montrer qu’on peut écrire Y = Aβ+ ε, où A ∈ IRn×d est une matrice à déterminer
et ε est un vecteur gaussien dont on précisera la loi.

2. Soit β̂ un minimiseur de t ∈ IRd 7→
∑n

i=1(Yi− x>i t)2 = ‖Y −At‖2 (on appelle β̂ un
estimateur des moindres carrés ordinaires de β).

a) Vérifier que la fonction g : t ∈ IRd 7→ ‖Y − At‖2 est convexe.
b) Montrer que g a bien au moins un minimiseur.
c) Vérifier que Aβ̂ est la projection orthogonale de Y sur l’espace engendré par

les colonnes de Y .
d) Montrer que si A est de rang d, alors β̂ est unique et on a

β̂ = (A>A)−1A>Y.

3. Dans cette question, on suppose que A est de rang d.
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a) Montrer que nécessairement, n ≥ d (autrement dit, on a plus d’observations
que de coefficients à estimer dans le vecteur inconnu β).

b) Déterminer la loi de β̂ et vérifier que β̂ est un estimateur non biaisé de β, i.e.,
E[β̂] = β.

c) Exprimer E[‖β̂ − β‖2] en fonction de σ2 et A.
d) Montrer que les vecteurs aléatoires β̂ et Y − Aβ̂ sont indépendants.
e) Supposons que n > d. Montrer que 1

n−d‖Y − Aβ̂‖2 est un estimateur sans

biais de σ2, i.e., E[ 1
n−d‖Y − Aβ̂‖

2] = σ2.

f) Montrer que 1
σ2‖Y − Aβ̂‖2 ∼ χ2

n−d.

Exercice 256

Vérifier que si X ∼ Nd(0, Id), alors UX ∼ Nd(0, Id) quelle que soit la matrice orthog-
onale U ∈ IRd×d.

Exercice 257

Soit X un vecteur gaussien centré réduit de dimension d ≥ 1, et P ∈ IRd×d une matrice
de projection orthogonale. Montrer que ‖PX‖2

2 est une variable de loi du chi-2, dont on
déterminera le nombre de degrés de liberté.

Exercice 258

Soient X et Y deux variables aléatoires réelles, telles que le vecteur (X, Y ) soit un
vecteur gaussien.

1. Montrer l’existence d’un réel a tel que X − aY et Y soient indépendantes.

2. En déduire E[X|Y ].

Exercice 259

Soient X et Y deux vecteurs aléatoires réels de tailles respectives p et q, tels que le
vecteur (X, Y ) soit un vecteur gaussien.

1. Montrer l’existence d’une matrice A ∈ IRp×q telle que les vecteurs X − AY et Y
soient indépendants.

2. En déduire E[X|Y ].

Exercice 260

1. Soit X = (X1, X2) un vecteur gaussien de taille 2.
a) Trouver un réel a tel que X2 + aX1 est indépendante de X1 On écrira a à

l’aide des paramètres de la loi de X).
b) En déduire l’espérance conditionnelle de X2 sachant X1.
c) En déduire aussi la loi conditionnelle de X2 sachant X1 = x, pour tout x ∈ IR.
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2. Plus généralement, soit X un vecteur gaussien de taille d ≥ 2. On note X1 le
vecteur formé des k premières coordonnées de X, et X2 le vecteurs formé des
d − k suivantes, où k est un entier tel que 1 ≤ k ≤ d − 1. Soit Σ la matrice de
variance-covariance de X. On décompose Σ par blocs:

Σ =

(
A B
C D

)
où A ∈ IRk×k, B ∈ IRk×(d−k), C ∈ IR(d−k)×k et D ∈ IR(d−k)×(d−k).

a) Vérifier que A est la matrice de variance-covariance de X1, D celle de X2, et
que B = C>.

b) Vérifier que X1 et X2 sont indépendants si et seulement si B = 0.
c) On suppose dans cette question que A est inversible. Trouver alors une matrice
M ∈ IR(d−k)×k telle que X2 −MX1 et X1 sont indépendantes, et en déduire
l’espérance conditionnelle de X2 sachant X1, puis la loi conditionnelle de X2

sachant X1 = x, pour tout x ∈ IRk.
d) (Question algébriquement difficile à essayer de résoudre après l’examen) Cal-

culer l’espérance conditionnelle de X2 sachant X1 dans le cas général où A
n’est pas nécessairement inversible.

Exercice 261

Soit X = (X1, . . . , Xd) un vecteur gaussien de taille d ≥ 1.

1. Montrer que X1 est indépendante du vecteur (X2, . . . , Xd) si et seulement si X1

est indépendante de chacun des Xi, i = 2, . . . , d.

2. Montrer que X1, . . . , Xd sont mutuellement indépendantes si et seulement si elles
sont indépendantes deux à deux.

Exercice 262

Soit (X, Y, Z) un vecteur gaussien centré. On suppose que Y et Z sont indépendantes.
Montrer que E[X|(Y, Z)] = E[X|Y ] + E[X|Z] p.s. (on distinguera les cas où Var(Y ) = 0
et/ou Var(Z) = 0). Rectifier cette égalité lorsque (X, Y, Z) n’est pas centré.

* Exercice 263 Cas particulier de la Méthode Delta

Soit (Xn)n≥1 une suite de vecteurs aléatoires réels dans IRd (d ≥ 1) i.i.d de carré
intégrable et g : IRd → IRp une fonction de classe C1, où p ≥ 1. On pose µ le moment
d’ordre 1 de X1, et Σ sa matrice de variance-covariance.

1. Rappeler la loi limite de
√
n(X̄n − µ), lorsque n→∞.

2. On cherche à montrer que
√
n(g(X̄n) − g(µ)) converge en distribution, lorsque

n→∞.
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a) Montrer que pour tout n ≥ 1,

√
n(g(X̄n)− g(µ)) = An

(√
n(X̄n − µ)

)
,

où An est la matrice aléatoire

An =

∫ 1

0

Jg(tX̄n + (1− t)µ) dt.

(pour tout x ∈ IRd, Jg(x) ∈ IRp×d est la matrice Jacobienne de g calculée au
point x).

b) Montrer que An converge en probabilité vers Jg(µ).
c) Conclure.

* Exercice 264 Une formule d’intégration par parties, cas univarié

Soit X ∼ N (0, 1) et f : IR → IR une fonction dérivable. On suppose que f et sa
dérivée sont à croissance au plus exponentielle, i.e., il existe deux constantes c1, c2 > 0
telles que max(|f(x)|, |f ′(x)|) ≤ c1e

c2|x| pour tout x ∈ IR.

1. Montrer, en justifiant toutes les étapes avec soin, que E[Xf(X)] = E[f ′(X)].

2. Réciproquement, soit Y une variable aléatoire réelle telle que E[Y g(Y )] = E[g′(Y )]
pour toute fonction dérivable g bornée et de dérivée bornée. Le but de cette
question est de montrer qu’alors, nécessairement, Y ∼ N (0, 1). Soit h : IR → IR
une fonction dérivable, bornée et de dérivée bornée. On note mh le nombre réel
défini comme mh = E[h(X)] (où on rappelle que X ∼ N (0, 1)).

a) Montrer qu’il existe une unique fonction, notée gh, dérivable sur IR, bornée,
et solution de l’équation différentielle y′ − xy = h−mh.

b) Montrer que g′h est elle aussi bornée.
c) En déduire que E[h(Y )] = mh.
d) Conclure.

Exercice 265 Une borne d’erreur du théorème de la limite centrale

Soient X1, . . . , Xn des variables aléatoires réelles i.i.d de carré intégrable, où n ≥ 1
est un entier fixé. Soit Zn =

√
n(X̄n − µ)/σ, où µ = E[X1] et σ2 = Var(X1). Soit

Z une variable aléatoire de loi normale centrée réduite. Soit h : IR → IR une fonction
dérivable satisfaisant ‖h‖∞ ≤ 1 et ‖h′‖∞ ≤ 1 où, pour toute fonction g : IR→ IR bornée,
‖g‖∞ = supx∈IR |g(x)|.

1. Montrer que E[h(Zn)] − E[h(Z)] −−−→
n→∞

0. Le but de cet exercice est de majorer,

de manière non-asymptotique, E[h(Zn)]−E[h(Z)], de manière indépendante de h,
par une suite qui tend vers zéro lorsque n → ∞. Pour cela, on suppose dans la
suite que X1 admet quatre moments.
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2. Expliquer pourquoi sans perte de généralité, on peut supposer que µ = 0 et σ2 = 1.
On fera cette hypothèse dans la suite, et on notera ρ = E[|X1|3] et κ = E[X4

1 ].

3. Montrer qu’il existe une unique fonction f : IR→ IR dérivable et bornée, solution
de l’équation différentielle y′ − xy = h− E[h(Z)].

4. Montrer que f est deux fois dérivable et satisfait ‖f‖∞ ≤ 2 et ‖f ′‖∞ ≤
√

2/π et
‖f ′′‖∞ ≤ 2.

5. Vérifier que E[h(Zn)]− E[h(Z)] = E[f ′(Zn)− Znf(Zn)].

6. Pour i = 1, . . . , n, on note Zn,i = 1√
n

∑
j 6=iXj = Zn −Xi/

√
n.

a) Vérifier que

E[f ′(Zn)− Znf(Zn)] = −E

[
1√
n

n∑
i=1

Xi (f(Zn)− f(Zn,i)− (Zn − Zn,i)f ′(Zn))

]

+ E

[(
1− 1√

n

n∑
i=1

Xi(Zn − Zn,i)

)
f ′(Zn)

]
.

b) A l’aide d’un développement de Taylor, montrer que la valeur absolue de la
première espérance ci-dessus est majorée par ρ/

√
n.

c) Montrer que la valeur absolue de la seconde espérance est majorée par√
2/π

n
E

[∣∣∣∣∣
n∑
i=1

(1−X2
i )

∣∣∣∣∣
]
.

d) En déduire que

|E[h(Zn)]− E[h(Z)]| ≤ ρ√
n

+

√
2κ

πn
.

* Exercice 266 Une formule d’intégration par parties, cas multivarié

Soit X un vecteur gaussien centré de taille d ≥ 1, et de matrice de variance-covariance
Σ ∈ S+

d . Soit f : IRd → IR une fonction différentiable. On suppose que f et ses dérivées
partielles sont à croissance au plus exponentielle, i.e., il existe deux constantes c1, c2 > 0
telles que max(|f(x)|, |∂1f(x)|, . . . , |∂df(x)|) ≤ c1e

c2|x| pour tout x ∈ IR. Ici, on note ∂jf
la dérivée partielle de f par rapport à la j-ème coordonnée, pour j = 1, . . . , d.

1. Montrer, en justifiant toutes les étapes avec soin, que pour tout k = 1, . . . , d,

E[Xkf(X)] =
d∑
j=1

Σj,kE[∂jf(X)].

2. A l’aide de la question précédente, retrouver l’expression de E[X1 . . . Xd] démontrée
dans l’exercice 245.
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negative Z

Y

positive Z

Table 1: Table des valeurs de P (Z ≤ t) où Z ∼ N(0, 1), pour des valeurs positives de t.

Deuxième décimale de t
t 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

∗Pour t ≥ 3.50, la valeur est plus grande que 0.9998.
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