
Statistique 3: Examen A rendre le: 7 Mai 2020

Exercice 1 M-estimateurs convexes (8 points)

Soit X un espace mesurable, muni d’une probabilité P , et soit X1, X2, . . . une suite
de variables aléatoires i.i.d. sur X de loi P . Soit Θ un ouvert convexe de IRd (d ≥ 1) et
φ : X ×Θ→ IR une fonction telle que:

• Pour tout θ ∈ Θ, φ(·, θ) est mesurable et intégrable par-rapport à P ;

• Pour tout x ∈ X , φ(x, ·) est convexe.

Pour tout entier n ≥ 1, on définit

Φn : Θ→ IR

θ 7→ 1

n

n∑
i=1

φ(Xi, θ)

et on définit aussi la fonction

Φ: Θ→ IR

θ 7→ Eφ(X1, θ).

On suppose que Φ est minorée et qu’elle atteint son minimum. On note Θ∗ = {θ∗ ∈
Θ : ∀θ ∈ Θ,Φ(θ) ≥ Φ(θ∗)} et on suppose que Θ∗ est un compact.

1. Montrer qu’avec probabilité 1, Φ̂n est aussi minorée et atteint son minimum, pour
n assez grand.

2. (question facultative) Pouvez-vous trouver un exemple de fonction φ, de loi P et
d’ensemble Θ tels que Φ est minorée, mais Θ∗ n’est pas compact et Φn est presque
sûrement non minorée ?

3. (question facultative) Montrer qu’il existe une suite de variables aléatoires (θ̂n)n≥1
telle qu’avec probabilité 1, θ̂n est un minimiseur de Φn pour n assez grand.

4. Montrer que d(θ̂n,Θ
∗)

p.s.−−−→
n→∞

0.

Exercice 2 Une inégalité de concentration (12 points)

Soit n ≥ 1 et X1, . . . ,Xn des espaces mesurables. Pour tout i ∈ {1, . . . , n}, soit Xi

une variable aléatoire à valeurs dans Xi. On suppose que X1, . . . , Xn sont définies sur un
même espace de probabilité et qu’elle sont indépendantes.
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Soit f : X1 × . . . × Xn → IR une fonction mesurable. On suppose l’existence de réels
strictement positifs c1, . . . , c2 tels que pour tout i ∈ {1, . . . , n}, pout tout (x1, . . . , xn) ∈
X1 × . . .×Xn, et pour tout s, t ∈ Xi,

f(x1, . . . , xi−1, t, xi+1, . . . , xn)− f(x1, . . . , xi−1, s, xi+1, . . . , xn) ≤ ci.

On cherche alors à démontrer une inégalité de concentration pour la variable aléatoire
Y = f(X1, . . . , Xn).

1. Montrer que Y est intégrable.
2. Pour i = 1, . . . , n, on pose Yi = E[Y |X1, . . . , Xi].

a) Vérifier que Y − EY =
∑n

i=1(Yi − Yi−1), après avoir préalablement défini Y0.
b) Vérifier que pour tout i = 1, . . . , n, Yi−1 = E[Yi|X1, . . . , Xi−1] (où l’espérance

conditionnelle sachant aucune variable sera comprise comme l’espérance au
sens usuel).

3. Pour tout i = 1, . . . , n, on pose

gi : X1 × . . .×Xi → IR

(x1, . . . , xi) 7→ Ef(x1, . . . , xi, Xi+1, . . . , Xn).

Vérifier que pour tout i = 1, . . . , n, Yi = gi(X1, . . . , Xi).
4. Soit i ≥ 1. Fixons (x1, . . . , xi−1) ∈ X1×. . .×Xi−1 et posons Zi = gi(x1, . . . , xi−1, Xi).

a) Montrer que Zi est sous-Gaussienne, de paramètre d’échelle c2i /4 (si vous ne
parvenez qu’à majorer le paramètre d’échelle par c2i , admettez le résultat).

b) En déduire que pour tout λ > 0, avec probabilité 1,

E
[
eλ(Yi−Yi−1)|X1, . . . , Xi−1

]
≤ eλ

2c2n/8

5. Conclure que pour tout λ > 0,

E
[
eλ(Y−EY )

]
≤ e

λ2
∑n
i=1 c

2
i

8 .

(On montrera d’abord que E
[
eλ(Y−EY )

]
≤ eλ

2c2n/8E
[
eλ

∑n−1
i=1 (Yi−Yi−1)

]
puis on procèdera

par récurrence)
6. Montrer que pour tout t ≥ 0,

P[|f(X1, . . . , f(Xn)− Ef(X1, . . . , Xn)| ≥ t] ≤ 2 exp

(
−2t2∑n
i=1 c

2
i

)
.

7. A l’aide du résultat précédent, retrouver:
a) l’inégalité de Hoeffding;
b) l’inégalité de concentration pour les fonctions Lipschitziennes appliquées aux

variables aléatoires bornées.
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8. Applications:
a) Triangles dans des graphes aléatoires: soit Gn un graphe aléatoire d’Erdös-

Rényi, de taille n ≥ 3 et de paramètre p ∈ (0, 1), et soit Tn le nombre de

triangles dans Gn. Vérifier que E[Tn] =
n(n− 1)(n− 2)

6
p3 et montrer que

Tn =
n3p3

6
+OP(n2).

b) Profondeur statistique de Tukey: soient X1, . . . , Xn des vecteurs aléatoires
i.i.d. dans IRd (n, d ≥ 1). Pour tout x ∈ IRd, on définit la profondeur de x,
dans le nuage de points X1, . . . , Xn, de la manière suivante:

Dn(x) = inf

{
#{i = 1, . . . , n : Xi ∈ H}

n
: H ∈ H, x ∈ H

}
,

où H est l’ensemble des demi-espaces affines fermés de IRd. Autrement dit,
Dn(x) est le nombre minimal de poins de l’échantillon étant inclus dans un
demi-espace fermé contenant x.
i – D’après vous, pourquoi Dn(x) est-elle appelée la profondeur du point x

dans le nuage ?
ii – Soit x ∈ IRd quelconque. Montrer que pour tout δ ∈ (0, 1),

EDn(x)−
√

log(2/δ)

2n
≤ Dn(x) ≤ EDn(x) +

√
log(2/δ)

2n

avec probabilité au moins 1− δ.

Exercice 3 Une inégalité de concentration uniforme en n (7+∞ points)

Soit (Xn)n≥1 une suite de variables aléatoires i.i.d., centrées et sous-Gaussiennes, de
paramètre d’échelle σ2 > 0.

1. Rappeler pourquoi pour tout δ ∈ (0, 1), et pour tout n ≥ 1,

P

[
|X̄n| ≤ σ

√
2 log(2/δ)

n

]
≥ 1− δ.

2. En utilisant une borne d’union, montrer que pour tout δ ∈ (0, 1),

P

[
∀n ≥ 1, |X̄n| ≤ σ

√
2 log(π2n2/(3δ))

n

]
≥ 1− δ.
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3. Une telle borne, uniforme en n, peut être intéressante en apprentissage en ligne.
Par exemple, dans le problème de bandit, à partir de chaque nouvelle observation,
on met peut mettre à jour des intervalles de confiance, et on souhaite que tous
ces intervalles soient valides, i.e., que chacun contienne le paramètre d’intérêt avec
la bonne probabilité. En revanche, pour un niveau δ fixé, la taille des intervalles
de confiance donnés par la borne précédente est de l’ordre de

√
(log n)/n, et on

peut se demander si ces intervalles ne sont pas conservateurs. Nous allons montrer,
dans cette question, qu’on peut en fait obtenir des intervalles de taille de l’ordre
de
√

(log log n)/n, en appliquant un outil plus fin que la borne d’union. Fixons
une suite (tn)n≥1 décroissante de réels strictement positifs.
a) Pour tout entier k ≥ 0, soit Ek = {2k, 2k + 1, . . . , 2k+1 − 1}. Pour n ≥ 1, on

note Sn = X1 + . . .+Xn. Montrer que

P[∃n ≥ 1, |X̄n| > tn] ≤
∞∑
k=0

P[max
n∈Ek
|Sn| > 2kt2k+1 ].

b) On admettra l’inégalité de Doob pour les martingales suivante:

∀m ≥ 1,∀t ≥ 0,P[ max
1≤i≤m

|Si| > t] ≤ 2e−
t2

2σ2m .

En déduire que, pour tout k ∈ IN,

P[max
n∈Ek
|Sn − S2k | > 2k−1t2k+1 ] ≤ 2e−

2kt2
2k+1

8σ2 .

c) Vérifier que, pour tout k ∈ IN,

P[|S2k | > 2k−1t2k+1 ] ≤ 2e−
2kt2

2k+1

8σ2 .

d) En utilisant le fait que, pour tout k ≥ 0,

max
n∈Ek
|Sn| ≤ |S2k |+ max

n∈Ek
|Sn − S2k |,

déduire que

P[max
n∈Ek
|Sn| > 2kt2k+1 ] ≤ 4e−

2kt2
2k+1

8σ2 .

e) On choisit tn = 4σ

√√√√ log
(

2π2(log2 n)
2

3δ

)
n

, pour tout n ≥ 1, où δ ∈ (0, 1) et log2

est le logarithme en base 2. Vérifier que la suite (tn)n≥2 est bien définie et
qu’elle est décroissante.
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f) En déduire qu’avec probabilité au moins 1− δ,

∀n ≥ 2, |X̄n| ≤ 4σ

√√√√ log
(

2π2(log2 n)
2

3δ

)
n

.

Ce résultat peut s’interpréter comme une loi du logarithme itéré uniforme, non
asymptotique. La taille des intervalles de confiances obtenus est, cette fois-ci,
de l’ordre de

√
(log log n)/n, qui est la vitesse qu’on retrouve dans la loi du

logarithme itéré standard, ce qui prouve que cette taille, asymptotiquement,
ne peut être améliorée.

4. (∞ points) Supposons que X1, X2, . . . sont i.i.d., Gaussiennes, de moyenne µ ∈ IR
et de variance σ2 > 0. Proposer une suite d’estimateurs (µ̂n)n≥1 telle que, quelle
que soit la valeur de µ, on a, pour tout δ ∈ (0, 1),

P [∀n ≥ 1, |µ̂n − µ| ≥ t(n, δ)] ≥ 1− δ,

où, pour tout δ ∈ (0, 1), t(n, δ) est une suite de réels positifs tendant vers zéro
strictement plus vite que

√
(log log n)/n.
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