Statistique 3: Examen A rendre le: 7 Mai 2020

Exercice 1 M-estimateurs convexes (8 points)

Soit X' un espace mesurable, muni d’'une probabilité P, et soit X, X5, ... une suite
de variables aléatoires i.i.d. sur X de loi P. Soit © un ouvert convexe de IR? (d > 1) et
¢ : X x © — IR une fonction telle que:

e Pour tout 0 € O, ¢(+,0) est mesurable et intégrable par-rapport a P;
e Pour tout z € X, ¢(z,-) est convexe.

Pour tout entier n > 1, on définit

®,:0 R
1 n
- X,
s 5 DX

et on définit aussi la fonction

d: 0 >R
0 — Eo(X1,0).

On suppose que P est minorée et qu’elle atteint son minimum. On note ©* = {#* €

©:V0 € O,0(0) > d(0*)} et on suppose que OF est un compact.

1. Montrer qu’avec probabilité 1, d,, est aussi minorée et atteint son minimum, pour
n assez grand.

2. (question facultative) Pouvez-vous trouver un exemple de fonction ¢, de loi P et
d’ensemble © tels que ® est minorée, mais ©* n’est pas compact et ®,, est presque
slirement non minorée 7

3. (question facultative) Montrer qu'il existe une suite de variables aléatoires (0, ),>1
telle qu’avec probabilité 1, 6,, est un minimiseur de ®,, pour n assez grand.

4. Montrer que d(f,,0%) =2 0.

n—oo

Exercice 2 Une inégalité de concentration (12 points)

Soit n > 1 et Aj,..., &, des espaces mesurables. Pour tout i € {1,...,n}, soit X;
une variable aléatoire a valeurs dans X;. On suppose que X1, ..., X, sont définies sur un
méme espace de probabilité et qu’elle sont indépendantes.



Soit f : A1 x ... x &, — IR une fonction mesurable. On suppose 'existence de réels
strictement positifs ¢q,. .., ¢ tels que pour tout i € {1,...,n}, pout tout (z1,...,x,) €
X X ... x X,, et pour tout s,t € A,

f(;r:l, R t, Titly- - - ,LEn) — f(.ﬁCl, e L5158, L4 1y - 7$n) S Cj.
On cherche alors & démontrer une inégalité de concentration pour la variable aléatoire
Y = f(Xq,...,X,).
1. Montrer que Y est intégrable.
2. Pouri=1,...,n,onposeY; =E[Y|Xy,..., X]
a) Vérifier que Y —EY = >"" (V; — Y;_4), aprés avoir préalablement défini Yj,.
b) Vérifier que pour tout i = 1,...,n, Y;_1 = E[Y;| X3,..., X;_1] (o0 espérance
conditionnelle sachant aucune variable sera comprise comme l'espérance au
sens usuel).

3. Pour tout : =1,...,n, on pose

g;: Xlx...xXi—>IR
($1,...,$i) »—>]Ef(x1,...,xi,XHl,...,Xn).

Vérifier que pour tout i = 1,...,n, Y; = ¢:(X1, ..., X;).
4. Soit¢ > 1. Fixons (z1,...,2;-1) € X1X...xX;_1 et posons Z; = g;(x1,...,x;_1, X;).
a) Montrer que Z; est sous-Gaussienne, de paramétre d’échelle ¢7/4 (si vous ne
parvenez qu’a majorer le parameétre d’échelle par ¢?, admettez le résultat).
b) En déduire que pour tout A > 0, avec probabilité 1,

E [6/\(1/2‘7}/2‘71)|X1, ce ,X,L',1:| S 6)\2(:’21/8

5. Conclure que pour tout A > 0,

A2y 2

E [e’\(Y_EY)} <e x o

(On montrera d’abord que E [eA(Y’IEY)] < N /3R [e’\ Zgllm’yifl)} puis on procedera
par récurrence)

6. Montrer que pour tout ¢ > 0,

042
Pllf (X, f(Xn) —Ef(Xy, .., Xp)| 2 ] < 2exp <%) :

7. A Taide du résultat précédent, retrouver:
a) l'inégalité de Hoeffding;
b) I'inégalité de concentration pour les fonctions Lipschitziennes appliquées aux
variables aléatoires bornées.



8. Applications:

a) Triangles dans des graphes aléatoires: soit G, un graphe aléatoire d’Erdgs-

Rényi, de taille n > 3 et de paramétre p € (0,1), et soit T, le nombre de

n(n—1)(n — 2)
6

triangles dans G,,. Vérifier que E[T,] = p° et montrer que
i

T,
6

+ OP(TZQ).

b) Profondeur statistique de Tukey: soient Xi,..., X, des vecteurs aléatoires
iid. dans R? (n,d > 1). Pour tout z € IR?, on définit la profondeur de z,
dans le nuage de points X,..., X, de la maniére suivante:

#{i=1,....n: X; € H}

n

Dn(x):inf{ :He”H,er},

ou H est 'ensemble des demi-espaces affines fermés de IR?. Autrement dit,
D, (z) est le nombre minimal de poins de I'échantillon étant inclus dans un
demi-espace fermé contenant z.
i — D’aprés vous, pourquoi D, (x) est-elle appelée la profondeur du point x
dans le nuage 7
ii — Soit 2 € IR¢ quelconque. Montrer que pour tout & € (0,1),

EDn(2) - % < Du(x) SED,(x) + %

avec probabilité au moins 1 — 9.

Exercice 3 Une inégalité de concentration uniforme en n (7+0c points)

Soit (X, )n,>1 une suite de variables aléatoires i.i.d., centrées et sous-Gaussiennes, de
paramétre d’échelle o2 > 0.

1. Rappeler pourquoi pour tout § € (0, 1), et pour tout n > 1,
_ 2log(2/0
P[Mga M] S14
n

2. En utilisant une borne d’union, montrer que pour tout d € (0, 1),

P [Vn > 1,|X,| < a\/QIOg(WQHQ/(g(S))] >1-4.

n



3. Une telle borne, uniforme en n, peut étre intéressante en apprentissage en ligne.
Par exemple, dans le probléme de bandit, a partir de chaque nouvelle observation,
on met peut mettre a jour des intervalles de confiance, et on souhaite que tous
ces intervalles soient valides, i.e., que chacun contienne le parameétre d’intérét avec
la bonne probabilité. En revanche, pour un niveau 4 fixé, la taille des intervalles
de confiance donnés par la borne précédente est de l'ordre de y/(logn)/n, et on
peut se demander si ces intervalles ne sont pas conservateurs. Nous allons montrer,
dans cette question, qu’on peut en fait obtenir des intervalles de taille de I'ordre
de y/(loglogn)/n, en appliquant un outil plus fin que la borne d’union. Fixons
une suite (t,),>1 décroissante de réels strictement positifs.

a) Pour tout entier k > 0, soit Ey = {28, 2% +1,... 281 —1}. Pour n > 1, on
note S, = X1 + ...+ X,,. Montrer que

P[En > 1,|X,| > t,] < Zp[r%%x S| > 2Ftorsa].
k=0 | F

b) On admettra I'inégalité de Doob pour les martingales suivante:

2

¥m > 1,V > 0, max |Sj| > ] < Qe 507 .

En déduire que, pour tout k € IN,

2k 2

k41
P[max |Sn — 52k| > 2k_1t2k+1] < 2e e
nekEy
c) Vérifier que, pour tout k € IN,
2k€k+1

P[| S| > 287 Hgian] < 2e7 507

d) En utilisant le fait que, pour tout k& > 0,
max |Sy,| < |Sqr| + max |S,, — Sox/,
nekby neky

déduire que
ok 2
Sk+1

Plmax |S,| > 2Ftpi1] < de™ 502
neky

10g ( 27r2(l§§2 n)2 )
n

est le logarithme en base 2. Vérifier que la suite (t,),>2 est bien définie et
qu’elle est décroissante.

e) On choisit ¢, = 4o , pour tout n > 1, ou § € (0,1) et log,



4.

f) En déduire qu’avec probabilité au moins 1 — ¢,

log (2#2(10(%2 n)2>
_ 3
Vn>2, |X,| <4o

n

Ce résultat peut s’interpréter comme une loi du logarithme itéré uniforme, non
asymptotique. La taille des intervalles de confiances obtenus est, cette fois-ci,
de T'ordre de (/(loglogn)/n, qui est la vitesse qu’on retrouve dans la loi du
logarithme itéré standard, ce qui prouve que cette taille, asymptotiquement,
ne peut étre améliorée.
(0o points) Supposons que Xi, Xo, ... sont i.i.d., Gaussiennes, de moyenne p € IR
et de variance o? > 0. Proposer une suite d’estimateurs (ji,),>1 telle que, quelle
que soit la valeur de u, on a, pour tout § € (0,1),

PVn > 1, |, — p| > t(n,0)] > 1 -9,

ot, pour tout 6 € (0,1), £(n,d) est une suite de réels positifs tendant vers zéro

strictement plus vite que 1/ (loglogn)/n.



