Statistique 3
2019-2020. Exercices: Approche Asymptotique (4)

Exercice 1

Pour P € A(IR), de fonction de répartition F, on note Gp € D(IR) le proces-
sus Gaussien centré de fonction de covariance cov(Gp(s),Gp(t)) = min(F\(s), F(t)) —
F(s)F(t),Vs,t € IR. Calculer Gp (et préciser I’ensemble de discontinuité de Gp) lorsque
P est:

1. La mesure de Dirac en zéro;

2. La loi de Bernoulli de parametre p, p €]0, 1[;

3. La loi discrete uniforme sur {—1,0, 1}.

Exercice 2 Fonction d'influence

Calculer, lorsqu’elle existe, la fonction d’influence de T en Fy, dans les cas suivants.

1. T(P) est la moyenne de P, pour tout P € A;(R) et Py € A(RR).

2. T(P) = inf{z € R : F(z) > 1/2}, pour tout P € A(IR), ou F est la fonction
de répartition de P, et Py, € A(IR) admet une densité strictement positive sur R
par-rapport a la mesure de Lebesgue.

3. T(P) est la variance de P, pour tout P € Ay(IR), o Ay(IR) est I'ensemble des
mesures de probabilité sur IR admettant un moment d’ordre 2, et Py € As(IR).

4. T(P) est le plus grand minimiseur § € IR de E[(.(X —0)], ou X ~ P et l.(u) = u?
siu| < e, Lo(u) = 2c|u| — ¢* sinon, o ¢ > 0, et By € A(IR) est une loi admettant
une densité strictement positive sur IR par-rapport a la mesure de Lebesgue.

5. T(P) est le plus grand minimiseur § € R de ®p(0) = E[¢(X,0)], ot X ~ P et
¢(x,-) est convexe sur IR pour tout z € IR, et Py, € A(IR) est telle que ®p, est
fortement convexe sur R et deux fois dérivable en 6* = T'(Fp).

Exercice 3 Différentiabilité au sens de Hadamard

1. Soit T une application d’un espace vectoriel métrique E sur IR et a € E. Montrer
que si T est différentiable au sens de Hadamard en a, alors elle est continue en a.

2. Soit A1(IR) 'ensemble des lois de probabilités sur IR (muni de la tribu Borélienne)
admettant un moment d’ordre 1. Pour P € A(R), soit T(P) = [,z dP(z).
Montrer que T n’est différentiable nullepart au sens de Hadamard.



3. Soit E un espace vectoriel métrique et a € E. Soit T} et T, deux applications de
E dans IR différentiables au sens de Hadamard en a. 17 + 15 et 17175 sont-elles
différentiables au sens de Hadamard en a?

Exercice 4 Différentiabilité de Hadamard tangentielle

Soit F un espace vectoriel métrique et Fy C E et D un sous-espace vectoriel de F.
Soit T': Fy — R et a € Ey. On dit que T est différentiable au sens de Hadamard en
a, tangentiellement a D, si et seulement s’il existe une application linéaire et continue
T : D — IR telle que pour tout h € D, pour toutes suites (t,),>1 C|0, 00, (hy)n>1 € E
telles que a + t, h, € Ey,Vn > 1et t, — 0, h, — h lorsque n — oo, on a:

1

+ (T(a+tahn) = T(a)) = To(h).

n n—oo
Par exemple, T est différentiable au sens de Hadamard en a si et seulement si elle est
différentiable au sens de Hadamard en a tangentiellement a tout ’espace E.

1. On note D(IR) 'ensemble de Skorohod sur IR et D;(IR) 'ensemble des fonctions
de répartitions sur IR. Pour F' € D;(IR), soit T(F) = inf{x € R : F(z) > 1/2}.
Montrer que T'(F) est une médiane de F.

2. Soit F' € Dy(IR) et supposons que F' est dérivable en m = T'(F'), avec F'(m) > 0.

a) Montrer que m est I'unique médiane de F.

b) Montrer que T est différentiable au sens de Hadamard (par-rapport a la
métrique induite par la norme infinie sur D(IR)) en F, tangentiellement a
I'ensemble des fonctions h € D(IR) qui sont continues en m.

¢) Soit Xy, Xs, ... des variables aléatoires réelles iid de fonction de répartition F.
Pour tout n > 1, soit m,, = T(F},,), ou F, est la fonction de répartition em-
pirique de X1, ..., X,,. A l'aide de la question précédente, démontrer que m,,

est asymptotiquement normale, et calculer sa variance asymptotique (adapter
la preuve de la méthode Delta fonctionnelle vue en cours; on pourra démontrer
ou admettre que le processus Gaussien Gr défini comme la limite en distribu-
tion, dans D(R), de \/n(F, — F), est continu en m presque sirement).

Exercice b M-estimation convexe : une preuve alternative de la normalité asymptotique
dans un cas simple

Soit ¢ : IR x R — IR une fonction telle que:
e Pour tout 0 € IR, ¢(+, ) est mesurable ;

e Pour tout x € IR, ¢(x,-) est convexe et continiment dérivable ;



e Vr e R,V0 € R, '%(w,@)‘ < M, ou M > 0 est une constante.

Soit & € IR. On note E I'ensemble des mesures signées finies v sur IR telles que
#(-,0) € L*(v), ie., telles que ¢(-,0) € L'(vF) et ¢(-,0) € LY(v™), ot v+ et v~ sont
les parties positive et négative, respectivement, de v (en particulier, v et v~ sont deux
mesures (positives) finies et v = v+ —v7).

Pour tout v € E, on définit la fonction ®, : IR — IR par

@V(H):/Rgf)(x,e)dy(x), Vo € R,

On note a présent Ey I’ensemble des probabilités P € E telles que ®p admet un unique
minimiseur sur IR, qu’on note alors T'(P).
Pour toute la suite, soit Fy une probabilité sur IR, telle que:

.PEEO;

e La fonction ®p, est deux fois dérivable en 6, := T'(F), avec @, (6p) > 0.

1.

Montrer que la définition de I'espace E ne dépend pas du choix de 0 € R, et que
la fonction @, est donc bien définie, pour tout v € E.

Montrer que pour tout v € E, ®p est dérivable sur R, avec

P (0) = i %(x,&) dv(x), VO € O.

(On pourra écrire v = vt — v~ ot vt et v~ sont les parties positive et négative,
respectivement, de v)

Dans cette question, on cherche a démontrer que la fonction T est différentiable
au sens de Hadamard en Fy. Soient ) € E, (t,),>1 une suite de réels strictement
positifs tendant vers zéro, et (Q,),>1 une suite d’éléments de E convergeant vers
Q@ pour la distance de Kolmogorov, telles que pour tout n > 1, Fy + t,Q, € Ejy.
Pour tout n > 1, on note 6, = T(P + t,Q,).

a) Montrer que pour tout n > 1, 6,, satisfait:

B (6) + ta®ly, (6,) = 0.

b) Montrer que ¢, (6,) — 0.
n—oo

c¢) En déduire que 6,, — 6y = O(t,,), lorsque n — oo.

d) En déduire aussi que 6,, — 6y = t, P, (6o) + o(tn), lorsque n — oc.

e) Montrer que l'application v € E +— ®,(6y) est continue (par-rapport a la
distance de Kolmogorov).

f) Conclure.



4. Soit (X,,)n>1 une suite de variables aléatoires i.i.d. de loi Fy. Pour tout n > 1, on
note P, la mesure empirique associée a Xq,...,X,, i.e.,

1 n
= ; 0Lx;}-

a) Montrer qu’avec probabilité 1, pour n assez grand, P, € Ey.

b) Pour tout n > 1, on note alors 0, = T(P,) si P, € Ey, 0, = 0 sinon. En
utilisant les questions précédentes, montrer que én est un estimateur consistent
et asymptotiquement normal de 6. Calculer sa variance asymptotique et
retrouver le résultat démontré en cours pour les M-estimateurs convexes.

Exercice 6 Une inégalité entre distances

Pour P,Q € A(RR), on pose di (P, Q) = sup,cg |Fr(x) — Fo(z)|, ot Fp et PQ sont les
fonctlons de repartltlons de P et @Q respectivement, et dy (P, Q) = sup{ [ h(z) dP(z) —
fR : h € H}, ou H est 'ensemble des fonctions 1-Lipschitziennes de IR dans

Soient P et () deux probabilités sur IR. On suppose que ) admet une densité par-
rapport a la mesure de Lebesgue, et que cette densité est majorée par un réel C' > 0.
Soit € > 0 quelconque. Pour x € IR, on pose h, = 1.<, et h, . la fonction qui vaut 1
sur | — oo, z], 0 sur [z + ¢, co[ et complétée en une fonction continue et affine sur [z, x 4 ¢].
Soit Y ~ Pet Z ~ Q.
Montrer que pour tout € IR, €h, . est 1-Lipschitzienne.
Montrer que Vo € R, E[h,(Y)] < E[h,(Y)].

>

Montrer que Vo € R, E[h, .(Z)] — E[h.(Z)] < Ce.
1

Montrer que dg (P, Q) < gdW(P, Q)+ Ce.

En déduire que di < +/2Cdy .
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