
Statistique 3
2019-2020. Exercices: Approche Asymptotique (4)

Exercice 1

Pour P ∈ ∆(IR), de fonction de répartition F , on note GP ∈ D(IR) le proces-
sus Gaussien centré de fonction de covariance cov(GP (s),GP (t)) = min(F (s), F (t)) −
F (s)F (t), ∀s, t ∈ IR. Calculer GP (et préciser l’ensemble de discontinuité de GP ) lorsque
P est:

1. La mesure de Dirac en zéro;

2. La loi de Bernoulli de paramètre p, p ∈]0, 1[;

3. La loi discrète uniforme sur {−1, 0, 1}.

Exercice 2 Fonction d’influence

Calculer, lorsqu’elle existe, la fonction d’influence de T en P0, dans les cas suivants.

1. T (P ) est la moyenne de P , pour tout P ∈ ∆1(IR) et P0 ∈ ∆1(IR).

2. T (P ) = inf{x ∈ IR : F (x) ≥ 1/2}, pour tout P ∈ ∆(IR), où F est la fonction
de répartition de P , et P0 ∈ ∆(IR) admet une densité strictement positive sur IR
par-rapport à la mesure de Lebesgue.

3. T (P ) est la variance de P , pour tout P ∈ ∆2(IR), où ∆2(IR) est l’ensemble des
mesures de probabilité sur IR admettant un moment d’ordre 2, et P0 ∈ ∆2(IR).

4. T (P ) est le plus grand minimiseur θ ∈ IR de E[`c(X − θ)], où X ∼ P et `c(u) = u2

si |u| ≤ c, `c(u) = 2c|u| − c2 sinon, où c > 0, et P0 ∈ ∆(IR) est une loi admettant
une densité strictement positive sur IR par-rapport à la mesure de Lebesgue.

5. T (P ) est le plus grand minimiseur θ ∈ IR de ΦP (θ) = E[φ(X, θ)], où X ∼ P et
φ(x, ·) est convexe sur IR pour tout x ∈ IR, et P0 ∈ ∆(IR) est telle que ΦP0 est
fortement convexe sur IR et deux fois dérivable en θ∗ = T (P0).

Exercice 3 Différentiabilité au sens de Hadamard

1. Soit T une application d’un espace vectoriel métrique E sur IR et a ∈ E. Montrer
que si T est différentiable au sens de Hadamard en a, alors elle est continue en a.

2. Soit ∆1(IR) l’ensemble des lois de probabilités sur IR (muni de la tribu Borélienne)
admettant un moment d’ordre 1. Pour P ∈ ∆1(IR), soit T (P ) =

∫
IR
x dP (x).

Montrer que T n’est différentiable nullepart au sens de Hadamard.
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3. Soit E un espace vectoriel métrique et a ∈ E. Soit T1 et T2 deux applications de
E dans IR différentiables au sens de Hadamard en a. T1 + T2 et T1T2 sont-elles
différentiables au sens de Hadamard en a?

Exercice 4 Différentiabilité de Hadamard tangentielle

Soit E un espace vectoriel métrique et E0 ⊆ E et D un sous-espace vectoriel de E.
Soit T : E0 → IR et a ∈ E0. On dit que T est différentiable au sens de Hadamard en
a, tangentiellement à D, si et seulement s’il existe une application linéaire et continue
T ′a : D → IR telle que pour tout h ∈ D, pour toutes suites (tn)n≥1 ⊆]0,∞[, (hn)n≥1 ⊆ E
telles que a+ tnhn ∈ E0,∀n ≥ 1 et tn → 0, hn → h lorsque n→∞, on a:

1

tn
(T (a+ tnhn)− T (a)) −−−→

n→∞
T ′a(h).

Par exemple, T est différentiable au sens de Hadamard en a si et seulement si elle est
différentiable au sens de Hadamard en a tangentiellement à tout l’espace E.

1. On note D(IR) l’ensemble de Skorohod sur IR et D1(IR) l’ensemble des fonctions
de répartitions sur IR. Pour F ∈ D1(IR), soit T (F ) = inf{x ∈ IR : F (x) ≥ 1/2}.
Montrer que T (F ) est une médiane de F .

2. Soit F ∈ D1(IR) et supposons que F est dérivable en m = T (F ), avec F ′(m) > 0.
a) Montrer que m est l’unique médiane de F .
b) Montrer que T est différentiable au sens de Hadamard (par-rapport à la

métrique induite par la norme infinie sur D(IR)) en F , tangentiellement à
l’ensemble des fonctions h ∈ D(IR) qui sont continues en m.

c) Soit X1, X2, . . . des variables aléatoires réelles iid de fonction de répartition F .
Pour tout n ≥ 1, soit m̂n = T (Fn), où Fn est la fonction de répartition em-
pirique de X1, . . . , Xn. A l’aide de la question précédente, démontrer que m̂n

est asymptotiquement normale, et calculer sa variance asymptotique (adapter
la preuve de la méthode Delta fonctionnelle vue en cours; on pourra démontrer
ou admettre que le processus Gaussien GF défini comme la limite en distribu-
tion, dans D(IR), de

√
n(Fn − F ), est continu en m presque sûrement).

Exercice 5 M-estimation convexe : une preuve alternative de la normalité asymptotique
dans un cas simple

Soit φ : IR× IR→ IR une fonction telle que:

• Pour tout θ ∈ IR, φ(·, θ) est mesurable ;

• Pour tout x ∈ IR, φ(x, ·) est convexe et continûment dérivable ;
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• ∀x ∈ IR,∀θ ∈ IR,

∣∣∣∣∂φ∂θ (x, θ)

∣∣∣∣ ≤M , où M > 0 est une constante.

Soit θ̄ ∈ IR. On note E l’ensemble des mesures signées finies ν sur IR telles que
φ(·, θ̄) ∈ L1(ν), i.e., telles que φ(·, θ̄) ∈ L1(ν+) et φ(·, θ̄) ∈ L1(ν−), où ν+ et ν− sont
les parties positive et négative, respectivement, de ν (en particulier, ν+ et ν− sont deux
mesures (positives) finies et ν = ν+ − ν−).

Pour tout ν ∈ E, on définit la fonction Φν : IR→ IR par

Φν(θ) =

∫
IR

φ(x, θ) dν(x), ∀θ ∈ IR.

On note à présent E0 l’ensemble des probabilités P ∈ E telles que ΦP admet un unique
minimiseur sur IR, qu’on note alors T (P ).

Pour toute la suite, soit P0 une probabilité sur IR, telle que:

• P ∈ E0 ;

• La fonction ΦP0 est deux fois dérivable en θ0 := T (P0), avec Φ′′P0
(θ0) > 0.

1. Montrer que la définition de l’espace E ne dépend pas du choix de θ̄ ∈ IR, et que
la fonction Φν est donc bien définie, pour tout ν ∈ E.

2. Montrer que pour tout ν ∈ E, ΦP est dérivable sur IR, avec

Φ′ν(θ) =

∫
IR

∂φ

∂θ
(x, θ) dν(x), ∀θ ∈ Θ.

(On pourra écrire ν = ν+ − ν−, où ν+ et ν− sont les parties positive et négative,
respectivement, de ν)

3. Dans cette question, on cherche à démontrer que la fonction T est différentiable
au sens de Hadamard en P0. Soient Q ∈ E, (tn)n≥1 une suite de réels strictement
positifs tendant vers zéro, et (Qn)n≥1 une suite d’éléments de E convergeant vers
Q pour la distance de Kolmogorov, telles que pour tout n ≥ 1, P0 + tnQn ∈ E0.
Pour tout n ≥ 1, on note θn = T (P + tnQn).

a) Montrer que pour tout n ≥ 1, θn satisfait:

Φ′P (θn) + tnΦ′Qn
(θn) = 0.

b) Montrer que tnΦ′Qn
(θn) −−−→

n→∞
0.

c) En déduire que θn − θ0 = O(tn), lorsque n→∞.
d) En déduire aussi que θn − θ0 = tnΦ′Qn

(θ0) + o(tn), lorsque n→∞.
e) Montrer que l’application ν ∈ E 7→ Φν(θ0) est continue (par-rapport à la

distance de Kolmogorov).
f) Conclure.
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4. Soit (Xn)n≥1 une suite de variables aléatoires i.i.d. de loi P0. Pour tout n ≥ 1, on
note Pn la mesure empirique associée à X1, . . . , Xn, i.e.,

Pn =
1

n

n∑
i=1

δ{Xi}.

a) Montrer qu’avec probabilité 1, pour n assez grand, Pn ∈ E0.
b) Pour tout n ≥ 1, on note alors θ̂n = T (Pn) si Pn ∈ E0, θ̂n = 0 sinon. En

utilisant les questions précédentes, montrer que θ̂n est un estimateur consistent
et asymptotiquement normal de θ0. Calculer sa variance asymptotique et
retrouver le résultat démontré en cours pour les M-estimateurs convexes.

Exercice 6 Une inégalité entre distances

Pour P,Q ∈ ∆(IR), on pose dK(P,Q) = supx∈IR |FP (x)−FQ(x)|, où FP et PQ sont les
fonctions de répartitions de P et Q respectivement, et dW (P,Q) = sup{

∫
IR
h(x) dP (x) −∫

IR
h(x) dQ(x) : h ∈ H}, où H est l’ensemble des fonctions 1-Lipschitziennes de IR dans

IR.
Soient P et Q deux probabilités sur IR. On suppose que Q admet une densité par-

rapport à la mesure de Lebesgue, et que cette densité est majorée par un réel C > 0.
Soit ε > 0 quelconque. Pour x ∈ IR, on pose hx = 1·≤x et hx,ε la fonction qui vaut 1

sur ]−∞, x], 0 sur [x+ ε,∞[ et complétée en une fonction continue et affine sur [x, x+ ε].
Soit Y ∼ P et Z ∼ Q.

1. Montrer que pour tout x ∈ IR, εhx,ε est 1-Lipschitzienne.

2. Montrer que ∀x ∈ IR,E[hx(Y )] ≤ E[hx,ε(Y )].

3. Montrer que ∀x ∈ IR,E[hx,ε(Z)]− E[hx(Z)] ≤ Cε.

4. Montrer que dK(P,Q) ≤ 1

ε
dW (P,Q) + Cε.

5. En déduire que dK ≤
√

2CdW .
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