
Statistique 3
2019-2020. Exercices d’entrâınement : Approche Asymptotique (3)

Exercice 1 Une inégalité de Cauchy-Schwarz pour l’ordre de Loewner, cas discret

Soient a1, . . . , aq et b1, . . . , bq deux familles de vecteurs de IRd (d, q ≥ 1). Supposons
que B :=

∑q
i=1 bib

>
i est inversible. On cherche à démontrer l’inégalité suivante, au sens

de l’ordre de Loewner:

q∑
i=1

aib
>
i

(
q∑
i=1

bib
>
i

)−1 q∑
i=1
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>
i �

q∑
i=1

aia
>
i .

1. Montrer que nécessairement, q ≥ d.

2. Soit C ∈ IRq×q la matrice de Gram de b1, . . . , bq associée au produit scalaire induit
par la matrice symétrique définie positive B−1, i.e., Ci,j = b>i B

−1bj, i, j = 1, . . . , q.
Montrer que C est une matrice de projection.

3. Pour tout x ∈ IRd, montrer que x>
∑q

i=1 aib
>
i

(∑q
i=1 bib

>
i

)−1∑q
i=1 bia

>
i x peut s’écrire

sous la forme y>Cy, pour un certain vecteur y ∈ IRq qu’on déterminera.

4. Conclure.

Exercice 2 Une inégalité de Cauchy-Schwarz pour l’ordre de Loewner, cas général

Soient a et b deux vecteurs aléatoires de taille d (d ≥ 1) définis sur un même espace
de probabilité, tels que E[‖a‖2 + ‖b‖2] est finie.

1. Montrer que E[aa>], E[bb>] et E[ab>] sont bien définies, et que E[ab>] et E[ba>]
sont les matrices transposées l’une de l’autre.
Dans toute la suite de l’exercice, on supposera que E[bb>] est inversible, et on
souhaite démontrer l’inégalité suivante:

E[ab>]E[bb>]−1E[ba>] � E[aa>]

au sens de l’ordre de Loewner pour les matrices symétriques réelles.

2. Montrer que l’inégalité démontrée dans l’exercice précédent est un cas particulier
de l’inégalité qu’on souhaite démontrer ici.

3. Soit M ∈ IRp×p (p ≥ 1) une matrice définie par blocs:

M =

(
A B
B> C

)
,

1



où A ∈ IRk×k, B ∈ IRk×l, C ∈ IRl×l, k + l = p et A et C sont symétriques. On
suppose que C est inversible. On appelle le complément de Schur de C dans M
la matrice A − BC−1B> ∈ IRk×k. Montrer que M est semi-définie positive si et
seulement si C et son complément de Schur dans M le sont.

4. Soit M ∈ IR2d×2d la matrice définie par blocs de la manière suivante:

M =

(
E[aa>] E[ab>]
E[ba>] E[bb>]

)
.

a) Montrer que M est semi-définie positive.
b) Conclure.

Exercice 3 L’estimateur de Hodges

On considère une suite X1, X2, . . . de variables iid de loi N (µ, 1), où µ ∈ IR. Soit
α ∈ (0, 1). Pour n ≥ 1, on définit

µ̂n =

{
X̄n si |X̄n| > n−1/4

αX̄n sinon.

On cherche à démontrer que µ̂n est asymptotiquement normal autour de µ, de variance
asymptotique strictement inférieure à l’inverse de l’information de Fisher, pour certaines
valeurs de µ.

1. Calculer l’information de Fisher I(µ), pour µ ∈ IR, associée au modèle paramétrique
correspondant au problème.

2. Supposons µ = 0.
a) Montrer que P0[|X̄n| > n−1/4] −−−→

n→∞
0.

b) En déduire que pour tout t ∈ IR, P0[
√
nµ̂n ≤ t]− P0[

√
nX̄n ≤ t/α] −−−→

n→∞
0.

c) Conclure quant à la normalité asymptotique de µ̂n, et calculer sa variance
asymptotique.

3. Supposons µ > 0 (le cas µ < 0 se traitant de manière similaire).

a) Montrer que pour n assez grand, Pµ[X̄n ≤ n−1/4] ≤ 1

n(µ− n−1/4)2
.

b) En déduire que pour tout t ∈ IR, Pµ[
√
n(µ̂n − µ) ≤ t] − Pµ[

√
n(X̄n − µ) ≤

t] −−−→
n→∞

0.

c) Conclure quant à la normalité asymptotique de µ̂n, et calculer sa variance
asymptotique.

4. Conclure quant à la validité du programme de Fisher.
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Exercice 4 Une inégalité de convexité

Soit f : IRd → IR une fonction convexe et a ∈ IRd.

1. Supposons que pour tout x ∈ IRd, ‖x − a‖2 = 1 ⇒ f(x) > f(a). Montrer que f
est minorée, et qu’elle n’atteint son minimum qu’en des points x ∈ IRd satisfaisant
‖x− a‖2 < 1.

2. Plus généralement, soit K un ensemble compact contenant a en son intérieur.
Supposons que pour tout x ∈ ∂K, f(x) > f(a). Montrer que f est minorée, et
qu’elle n’atteint son minimum qu’en des points qui sont dans l’intérieur de K.

Exercice 5 Des médianes empiriques à plusieurs vitesses

Soit X1, X2, . . . des variables aléatoires réelles iid, et soit F leur fonction de répartition.
Supposons la médiane unique, et notons-la m. Supposons aussi que F satisfait F (x)− 1

2
∼

L2(x − m)α lorsque x → m,x > m et 1
2
− F (x) ∼ L1(m − x)α lorsque x → m,x < m,

où α ∈ (0, 1] et L1, L2 > 0. Soit m̂n une médiane empirique associée à X1, . . . , Xn, pour
tout n ≥ 1. Pour simplifier, on prendra m̂n = X(dn

2
e), où X(1), . . . , X(n) est l’échantillon

réordonné des n premières variables X1, . . . , Xn, et dte est le plus petit entier supérieur
ou égal à t, pour tout réel t.

Montrer que n
1
2α (m̂n −m) converge en distribution vers une loi dont on calculera la

fonction de répartition en fonction de celle de la loi normale centrée réduite. Interpréter
ce résultat en termes de la vitesse de convergence de la médiane empirique vers la médiane
théorique. On pourra s’inspirer de l’Exercice 3 de la Feuille 2.

Exercice 6 M-estimateurs et médiane empirique

Soit X1, X2, . . . une suite de variables aléatoires iid à valeurs dans un intervalle I ⊆ IR
et admettant une densité (par-rapport à la mesure de Lebesgue) f continue et strictement
positive sur I. Pour x, t ∈ IR, soit φ(x, t) = |x − t| − |x| et posons Φ(t) = E[φ(X, t)] et

Φn(t) =
1

n

n∑
i=1

φ(Xi, t), pour n ≥ 1.

1. Montrer que X1 admet une unique médiane, qu’on notera m, et que m est dans
l’intérieur de I.

2. Montrer que Φ(t) est bien définie pour tout t ∈ IR.

3. Montrer que Φ est deux fois dérivable en m et que Φ′′(m) > 0.

4. Montrer que Φ admet un unique minimum, et qu’il s’agit de m.

5. En déduire qu’une médiane empirique m̂n, calculée à partir de X1, . . . , Xn, pour
tout n ≥ 1, est asymptotiquement normale, et déterminer sa variance asympto-
tique.
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Exercice 7 Estimateurs de Huber

Soit X1, X2, . . . une suite de variables aléatoires iid définies sur un intervalle I ⊆ IR et
admettant une densité (par-rapport à la mesure de Lebesgue) f continue et strictement
positive sur I. Soit c > 0. On définit la fonction

`c(u) =

{
u2 si |u| ≤ c

2c|u| − c2 sinon.

Pour x, t ∈ IR, soit φ(x, t) = `c(x − t) − 2c|x| et posons Φ(t) = E[φ(X, t)] et Φn(t) =

1

n

n∑
i=1

φ(Xi, t), pour n ≥ 1.

1. Montrer que Φ(t) est bien définie pour tout t ∈ IR.

2. Montrer Φ admet un unique minimum, qu’on notera m, que m est dans l’intérieur
de I et que Φ est deux fois dérivable en m, avec Φ′′(m) > 0.

3. Montrer que pour tout n ≥ 1, Φn admet au moins un minimiseur m̂n.

4. Montrer que m̂n est asymptotiquement normal, et déterminer sa variance asymp-
totique à l’aide de f , m et c.
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