
Optimisation avancée
2018-2019. Exercices d’entrâınement (Chap̂ıtre 4: Méthodes
géométriques)

Exercice 1

Montrer que pour tout α,L > 0, il n’existe pas de fonction à la fois α-fortement
convexe et L-Lipschitzienne sur IRd.

Exercice 2 Résolution exacte de systèmes linéaires: Méthode du gradient conjugué

Soit A ∈ IRd×d une matrice symétrique définie positive et b ∈ IRd. On cherche à
résoudre le systéme linéaire Ax = b.

1. Pour x, y ∈ IRd, on note 〈x, y〉A = x>Ay et ‖x‖A = (x>Ax)1/2. Montrer que 〈·, ·〉A
définit un produit scalaire. Dans la suite, on considère une base (p0, . . . , pd−1)
orthogonale pour le produit scalaire 〈·, ·〉A. Soit x0 ∈ IRd arbitraire et, pour t =
1, . . . , d, soit xt ∈ argmin

x∈{xt−1+λpt−1:λ∈IR}
f(x). Le but du problème est de montrer que

x̂ := xd est égal à la solution x∗ du système Ax = b.

2. Montrer que pour tout t = 1, . . . , d, xt = xt−1 −∇f(xt−1)
> pt−1
‖pt−1‖2A

.

3. Montrer que pour tout t = 1, . . . , d et tout i = 0, . . . , t− 1, ∇f(xt)
>pi = 0.

4. En utilisant la relation Ax∗ = b, en déduire que 〈x̂, pi〉A = 〈x∗, pi〉A, pour tout
i = 0, . . . , d− 1, puis que x̂ = x∗.

5. En pratique, on n’a pas nécessairement accès à une famille (p0, . . . , pd−1) orthogo-
nale pour 〈·, ·, 〉A. Montrer qu’on en obtient bien une en définissant p0 = ∇f(x0)

et, pour t = 1, . . . , d− 1, pt =

{
∇f(xt)− 〈∇f(xt), pt−1〉A pt−1

‖pt−1‖2A
si pt−1 6= 0

0 sinon.

6. On veut conclure qu’en définissant, par récurrence: x0 ∈ IRd, p0 = ∇f(x0) et, pour
t = 1, . . . , d− 1:

xt =

{
xt−1 −∇f(xt−1)

> pt−1

‖pt−1‖2A
si pt 6= 0

xt−1 sinon

et

pt =

{
∇f(xt)− 〈∇f(xt), pt−1〉A pt−1

‖pt−1‖2A
si pt−1 6= 0

∇f(xt) sinon

on obtient nécessairement xd = x∗.
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a) Montrer que si pt 6= 0 pour tout t ≤ d − 1, on peut conclure directement en
utilisant les questions précédentes.

b) Sinon, soit t = min{s ≥ 0 : ps = 0}. Montrer que ∇f(xt) est nécessairement
une combinaison linéaire de ∇f(x0), . . . ,∇f(xt−1).

c) Montrer que les familles (p0, . . . , pt−1) et (∇f(x0), . . . ,∇f(xt−1)) engendrent
le même sous-espace vectoriel Et de IRd.

d) Montrer que xt minimise f sur Et et en déduire que ∇f(xt)
>z = 0 pour tout

z ∈ Et.
e) Conclure que xt = x∗ et que pour tout s ≥ t, xs = xt = x∗, et donc, x̂ = x∗.

7. Sans donner de justification, comment généraliseriez-vous l’algorithme précédent
au cas où f n’est pas nécessairement une fonction quadratique ?
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