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1 Chapitre 2: Convexité et dualité

Proposition 1. Soit E ⊆ Rd un ensemble convexe et f ∶ E → R une fonction
convexe. Alors f est continue sur l’intérieur de E.

Afin de prouver cette proposition, on démontre d’abord le lemme suivant.

Lemme 1. Soit E ⊆ Rd un ensemble convexe et f ∶ E → R une fonction
convexe. Alors f est localement bornée sur l’intérieur de E, i.e., pour tout
x ∈ E̊, il existe ε > 0 et M ∈ R tels que B(x, ε) ⊆ E et ∀y ∈ B(x, ε), f(y) ≤M .

Preuve. Soit x ∈ E̊. Alors il existe ε > 0 tel que B∞(x, ε) ⊆ E. Les sommets
du polytope B∞(x, ε) sont les points de la forme Xω = x+εω où ω ∈ {−1,1}d.
Ils sont en nombre fini, on peut donc définir M = maxω∈{−1,1}d f(x + εω).
Soit y ∈ B∞(x, ε). Alors y peut s’écrire comme une combinaison convexe des
sommets de B∞(x, ε): il existe une famille de nombres positifs (λω)ω∈{−1,1}d ,
de somme 1, telle que

y = ∑
ω∈{−1,1}d

λωXω.

Ainsi, par convexité de f ,

f(y) ≤ ∑
ω∈{−1,1}d

λωf(Xω) ≤M.

Donc, comme B(x, ε) ⊆ B∞(x, ε), on a, pour tout y ∈ B(x, ε) f(y) ≤M .

Preuve de la Proposition 1. Soit x ∈ E̊. On va démontrer que f est
continue en x. D’après le lemme précédent, on peut trouver ε > 0 et M ∈ R
tels que B(x, ε) ⊆ E et ∀y ∈ B(x, ε), f(y) ≤M .

Soit y ∈ B(x, ε)∖{x}. Soit z1 = x+
ε

∥y − x∥(y−x) et z2 = x−
ε

∥y − x∥(y−x):
il s’agit des points de la droite affine reliant x et y, se trouvant sur le bord de
B(x, ε). L’idée est d’exprimer y comme combinaison convexe de x et z1, puis
x comme combinaison convexe de y et z2, afin de borner ∣f(y) − f(x)∣. Il est
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facile de voir que y = x + λ(z1 − x) et x = y + µ(z2 − y), où λ = ∥y − x∥
ε

∈ [0,1]

et µ = ∥y − x∥
∥y − x∥ + ε ∈ [0,1]. Alors, par convexité de f ,

f(y) ≤ f(x) + λ(f(z1) − f(x)) ≤ f(x) + λ(M − f(x))

et
f(x) ≤ f(y) + µ(f(z2) − f(y)),

d’où f(y) ≥ f(x) + µ

1 − µ(f(x) − f(z2)) ≥ f(x) +
µ

1 − µ(f(x) −M) = f(x) +
λ(f(x) −M). Ainsi, on conclut que ∣f(y) − f(x)∣ ≤ λ(f(x) −M), qui tend
vers zéro lorsque y tend vers x (car λ tend vers zéro). �

Proposition 2. Soit E ⊆ Rd un ensemble convexe et f ∶ E → R une appli-
cation continue. Alors f est convexe si et seulement si pour tout x, y ∈ E,

f (x + y
2

) ≤ f(x) + f(y)
2

.

Preuve. L’implication directe étant évidente par définition de la convexité,
on ne prouve que l’autre direction. Soit x, y ∈ E et λ ∈ [0,1]. Ecrivons la

décomposition de λ en base 2: λ =
∞
∑
k=1

ak
2k

, où pour tout k ≥ 1, ak ∈ {0,1}. Soit

z = λx+(1−λ)y. On cherche à montrer que f(z) ≤ λf(x)+(1−λ)f(y). Pour

n ≥ 1, posons λn =
n−1
∑
k=1

ak
2k

(λ1 = 0) et λ′n = λn +
1

2n
: ce sont les troncatures

par défaut et par excès de λ à l’ordre n. Posons aussi zn = λnx+ (1−λn)y et
z′n = λ′nx + (1 − λ′n)y. Montrons par récurrence que pour tout n ≥ 1,

f(zn) ≤ λnf(x) + (1 − λn)f(y) (1)

et
f(z′n) ≤ λ′nf(x) + (1 − λ′n)f(y). (2)

Pour n = 1, λ1 = 0 donc (1) est évidente, et λ′1 = 1/2 donc (2) découle de
l’hypothèse sur f . Soit n ≥ 1 et supposons (1) et (2) vraies. Si an = 0, alors

λn+1 = λn et λ′n+1 = λ′n +
1

2n+1 . Dans ce cas, zn+1 = zn, donc

f(zn+1) = f(zn)
≤ λnf(x) + (1 − λn)f(y) par (1)

= λn+1f(x) + (1 − λn+1)f(y)
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et il est facile de vérifier que z′n+1 =
zn + z′n

2
, donc par hypothèse sur f ,

f(z′n+1) ≤
f(zn) + f(z′n)

2

≤ λnf(x) + (1 − λn)f(y) + λ′nf(x) + (1 − λ′n)f(y)
2

par (1) et (2)

= λ′n+1f(x) + (1 − λ′n+1)f(y).

Donc (1) et (2) sont toujours vraies au rang n + 1. Le cas où an = 1 se traite
de la même manière. A présent, (1) étant vraie pour tout n ≥ 1 (le fait que
(2) est aussi vraie n’était utile que pour faire marcher la récurrence), on peut
y passer à la limite lorsque n→∞, par continuité de f , afin de conclure.
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