Optimisation avancée 2018-2019. Preuves
supplémentaires

1 Chapitre 2: Convexité et dualité

Proposition 1. Soit E ¢ R? un ensemble conveze et f: E - R une fonction
convexe. Alors f est continue sur 'intérieur de E.

Afin de prouver cette proposition, on démontre d’abord le lemme suivant.

Lemme 1. Soit E ¢ RY un ensemble convexe et f : E — R une fonction
conveze. Alors f est localement bornée sur l'intérieur de E, i.e., pour tout
xeF, il eristec >0 et M eR tels que B(x,e) € E et Vy e B(x,¢), f(y) < M.

Preuve. Soit z € . Alors il existe € > 0 tel que Be (z,e) € E. Les sommets
du polytope Bo(z,¢) sont les points de la forme X, = z+ew ot w € {-1,1}%.
Ils sont en nombre fini, on peut donc définir M = max,e_11ye f(2 + cw).
Soit y € Boo(x,€). Alors y peut s’écrire comme une combinaison convexe des
sommets de B (z,¢): il existe une famille de nombres positifs (A, )we(-1,134,
de somme 1, telle que

Y= Z Ao Xey-

we{-1,1}4

Alinsi, par convexité de f,

f) < Y Af(X) <M.

we{-1,1}4

Donc, comme B(z,¢) € Boo(x,€), on a, pour tout y € B(z,e) f(y) <M. O

Preuve de la Proposition 1.  Soit x € E. On va démontrer que f est
continue en z. D’apres le lemme précédent, on peut trouver € >0 et M € R
tels que B(x,e) € FE et Vy € B(x, 5) f(y) <M.

Soit y € B(x,e)~{x}. Soit z; = “ p —(y-x) et zo=a— o=zl x” —(y—x):

il s’agit des points de la droite affine reliant x et y, se trouvant sur le bord de

B(z,¢e). L’idée est d’exprimer y comme combinaison convexe de x et z1, puis
x comme combinaison convexe de y et 29, afin de borner |f(y) — f(x)|. Il est



ly =]

. €[0,1]

facile de voir que y =z + A(z1 —z) et x =y + pu(ze —y), ou A =
ly -]
ly -]+

f(y) < f(x) + A(f(21) = f2)) < fz) + MM - f())

et p= € [0,1]. Alors, par convexité de f,

et
F() < J () + (£ () - FW)).
Tl f(y) 2 f(@) + T2 (F@) = £(2)) 2 f@) + T (@) = M) = f(2) +

A(f(x) = M). Ainsi, on conclut que |f(y) - f(x)| < AM(f(x) = M), qui tend
vers zéro lorsque y tend vers = (car A tend vers zéro). O

Proposition 2. Soit E ¢ R? un ensemble convexe et f: E — R une appli-
cation continue. Alors [ est convexe si et seulement si pour tout x,y € F,

f(x+y) S@)+ )

2 2
Preuve. L’implication directe étant évidente par définition de la convexité,
on ne prouve que l'autre direction. Soit z,y € F et X e[0,1]. Ecrivons la

décomposition de A en base 2: A = Z ok ou pour tout k > 1, ax € {0,1}. Soit
z=Ax+(1-X)y. On cherche a montrer que f(z) < Af(x)+(1-X)f(y). Pour

nl

1
n > 1, posons A, = Z o (A1 =0) et A, = A\, + on' Ce sont les troncatures
k=1
par défaut et par exces de A a l'ordre n. Posons aussi z, = A,z + (1 - \,)y et

2zl =M x+(1-A)y. Montrons par récurrence que pour tout n > 1,

f(zn) < Anf (@) + (1= An) f(y) (1)
et

fGn) < A f(@) + (1= A0) f(y) (2)
Pour n =1, A\; = 0 donc est évidente, et A} = 1/2 donc découle de
I’hypothese sur f. Soit n > 1 et supposons et vraies. Si a, =0, alors

Ans1 = Ap et AL = AL+ Py Dans ce cas, 2,1 = 2, donc

f (i) = f(2n)
<A f(x) + (1= ) f(y) par
= >\n+1f($) + (1 - >\n+1)f(y)



2+ 2!

et il est facile de vérifier que z/,,, = T”, donc par hypothese sur f,

f(Z;Hl) < f(Zn) ; f(’z?,z)

S @)+ A= A)f(y) + A (@) + (1= A) f(Y)
B 2
= A f (@) + (1= 2000 f ()

Donc et sont toujours vraies au rang n + 1. Le cas ou a, = 1 se traite
de la méme maniere. A présent, étant vraie pour tout n > 1 (le fait que
est aussi vraie n’était utile que pour faire marcher la récurrence), on peut
y passer a la limite lorsque n — oo, par continuité de f, afin de conclure. [
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