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• Model for random binary vectors 𝑋 = 𝑋1, … , 𝑋𝑁 ∈ 0,1
𝑁

• Equivalently, random subset 𝑌 ⊆ [𝑁] s.t.

ℙ 𝐽 ⊆ 𝑌 = det 𝐾𝐽 , ∀𝐽 ⊆ 𝑁

for some matrix 𝐾 ∈ ℝ𝑁×𝑁.

• Ex: ℙ 1 ∈ 𝑌 = 𝐾1,1, ℙ 1,2 ∈ 𝑌 = 𝐾1,1𝐾2,2 − 𝐾1,2𝐾2,1.

• If 𝐼𝑁 − 𝐾 is invertible, DPP(𝐾) is also an L-ensemble:

ℙ 𝑌 = 𝐽 =
det(𝐿𝐽)

det(𝐼𝑁 + 𝐿)
, ∀𝐽 ⊆ 𝑁

where 𝐿 = 𝐾 𝐼𝑁 − 𝐾
−1 (⇔ 𝐾 = 𝐿 𝐼𝑁 + 𝐿

−1).

• If 𝐾 is symmetric: DPPs can model repulsive interactions: 𝑋1, 𝑋2, … , 𝑋𝑁 are 

negatively associated (≫ negative correlation), i.e.,

𝑐𝑜𝑣 𝑓 𝑋𝑖 , 𝑖 ∈ 𝑆 , 𝑔 𝑋𝑗, 𝑗 ∈ 𝑇 ≤ 0,

for all disjoint 𝑆, 𝑇 ⊆ [𝑁] and coordinatewise nondecreasing functions 𝑓, 𝑔.  

E.g., 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = −𝐾𝑖,𝑗
2 ≤ 0.

• In general, 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = −𝐾𝑖,𝑗𝐾𝑗,𝑖.

• Signed DPP: 𝐾𝑖,𝑗 = 𝜀𝑖,𝑗𝐾𝑗,𝑖 , 𝜀𝑖,𝑗 ∈ −1,1 : 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = −𝜀𝑖,𝑗𝐾𝑖,𝑗
2

Allow for both positive and negative dependence.

• Admissible kernels: When 𝐼𝑁 − 𝐾 is invertible, DPP(𝐾) is well defined iff 𝐿 =
𝐾 𝐼𝑁 − 𝐾

−1 is a 𝑷𝟎-matrix (i.e., all its principal minors are nonnegative).

• Examples of admissible kernels:

 Any symmetric 𝐾 with 0 ≤ 𝐾 ≤ 𝐼𝑁

 Any 𝐾 = 𝐷 + 𝜆𝐴 for some 𝜆 ∈ 0,
1

2
, diagonal matrix 𝐷 with

𝐷𝑖,𝑖 ∈ 𝜆, 1 − 𝜆 and 𝐴 ∈ −1,1 𝑁.

DPP’s

• DPP(𝐾) is completely determined by the principal minors of 𝐾.

• Given a class 𝒯 ⊆ ℝ𝑁×𝑁, PMA asks: 

I. What is the collection of all matrices 𝐻 ∈ 𝒯 that have the same list of principal minors as 𝐾 ?

II. Given an available list of prescribed principal minors, how to find a matrix 𝐻 ∈ 𝒯 whose principal minors are given by that list, using as few queries

from that list as possible ?

• Here, 𝒯 is the class of signed kernels, i.e., 𝐾𝑖,𝑗 = 𝜀𝑖,𝑗𝐾𝑗,𝑖 , 𝜀𝑖,𝑗 ∈ {−1,1}.

• Main idea: 

• Adjacency graph of a solution 𝐻 ∈ 𝒮: 𝐺𝐻 = 𝑁 ,𝐸𝐻 ,  with 𝐸𝐻 = 𝑖, 𝑗 : 𝑖 ≠ 𝑗, 𝐻𝑖,𝑗 ≠ 0 = 𝑖, 𝑗 : 𝑖 ≠ 𝑗, 𝑎{𝑖}𝑎{𝑗} − 𝑎 𝑖,𝑗 ≠ 0 .

Identification and learning

• Remark: 𝑖, 𝑗 ∉ 𝐸𝐾⇔ 𝑋𝑖 , 𝑋𝑗 are independent    (𝑋𝑖 = 1𝑖∈𝑌, where 𝑌 ∼ DPP(𝐾).)

• To recover the signs of 𝐻𝑖,𝑗’s, use higher order principal minors, associated with small positive cycles in 𝐺 (i.e.,                          )

• Key idea: Decompose each 𝜎 ∈ 𝔖𝐽 as a product of cycles 

• Example: If 𝐶 is an induced cycle (i.e., with no chords) in 𝐺𝐾, with vertex set 𝐽, then det𝐾𝐽 = 𝐹 𝐾𝑖,𝑖 , 𝐾𝑖,𝑗
2 : 𝑖, 𝑗 ∈ 𝐽 ± 1 + 𝑖,𝑗 ∈𝐶 𝜀𝑖,𝑗  𝑖,𝑗 ∈𝐶𝐾𝑖,𝑗

• Ideal situation: There is a basis of induces cycles that are all positive.

• Main issue: Induced cycles may be negative and non induced positive cycles may have more than one positive traveling:   

• Positive travelings can not be dissociated from the principal minors (e.g., 𝐻12𝐻23𝐻34𝐻41+𝐻13𝐻32𝐻24𝐻41+𝐻12𝐻24𝐻43𝐻32)

• Assumptions: 

• 𝐻 is dense, i.e., the graph 𝐺𝐻 is complete (this allows to only consider cycles of size 3 and 4)

• The magnitudes 𝐻𝑖,𝑗 are in general position (this allows to separate positive travelings of a given cycle)

Theorem: The signs can be (not uniquely) recovered using the 𝑎𝐽’s, for #𝐽 ≤ 4.

Conclusions

Theorem: Under the previous assumptions, the set of solutions 𝒮 is completely

determined by the 𝑎𝐽’s, for #𝐽 ≤ 4, and there is a polynomial time algorithm that

outputs one solution.

In general, the signs of the 𝐻𝑖,𝑗’s would be (not uniquely) determined by the 𝑎𝐽’s,

where 𝐽 is the vertex set of a positive cycle in some simple family of spanning

cycles.

Open questions:

1. In general, how to find such a family of spanning cycles efficiently?

2. What properties (analogous to negative association) are satisfied by signed

DPP’s?

3. For signed DPP’s, the eigenstructure of the kernel no longer plays a significant

role (e.g., for sampling). How to sample a signed DPP efficiently?
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Signed Determinantal Point Processes

K = ∈ ℝ𝑁×𝑁
𝐾𝐽

↔
𝐽

Selection models

• Items labeled 1, 2,… ,𝑁.

• Selection model: Random subset of items.

• E.g., ferromagnetic / antiferromagnetic Ising models (statistical physics, e.g.,

particles with positive spin)

• Objective: Develop a simple model (≪ 2𝑁 parameters), that is tractable,

computationally simple and accurate for given applications.

• ML application: Recommender systems.

Given 𝒀 ∼ DPP(𝑲), identify and learn 𝑲:
The Principal Minor Assignment Problem

I⇔ Identification of 𝐊

II⇔ Learning 𝐊 efficiently
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Algorithm

Input: Family 𝑎𝐽 𝐽⊆ 𝑁 ,𝐽≠∅ ⊆ ℝ of prescribed principal minors.

Output: Matrix 𝐻 ∈ 𝒯 with det𝐻𝐽 = 𝑎𝐽, ∀𝐽 ⊆ 𝑁 , 𝐽 ≠ ∅.

Step 1: Set H𝑖,𝑖 = 𝑎 𝑖 for all 𝑖 ∈ 𝑁 .

Step 2: Set H𝑖,𝑗 = 𝑎 𝑖 𝑎 𝑗 − 𝑎 𝑖,𝑗 for all 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗.

Step 3: Set 𝜀𝑖,𝑗 = 𝑠𝑖𝑔𝑛 𝑎 𝑖 𝑎 𝑗 − 𝑎 𝑖,𝑗 for all 𝑖, 𝑗 ∈ 𝑁 , 𝑖 ≠ 𝑗 s.t. A𝑖,𝑗 ≠ 0.

Step 4: Find the set 𝒥+ of all triples (𝑖, 𝑗, 𝑘) such that 𝜀𝑖,𝑗𝜀𝑗,𝑘𝜀𝑖,𝑘 = 1 and find the

sign of 𝐻𝑖,𝑗𝐻𝑗,𝑘𝐻𝑖,𝑘 from 𝑎{𝑖,𝑗,𝑘}.

Step 5: For all 𝑆 ⊆ 𝑁 if size 4, use 𝑎𝑆 in order to find  𝑖,𝑗 ∈𝐶:𝑖<𝑗𝐾𝑖,𝑗 for all the

(at most three) positive cycles 𝐶 that have vertex set 𝑆.

Step 6: By Gaussian elimination on {+,−}, find a sign assignment of all the 𝐻𝑖,𝑗’s

that agree with signs of the products found in Steps 4 and 5.

More precisely, given a family 𝒂𝑱 𝑱⊆ 𝑵 ,𝑱≠∅ ⊆ ℝ, characterize 𝓢 = 𝑯 ∈ 𝓣: 𝒅𝒆𝒕 𝑯𝑱 = 𝒂𝑱, ∀𝑱 ⊆ 𝑵 , 𝑱 ≠ ∅ and find 𝑯 ∈ 𝓢 efficiently.

• 𝐽 = 𝑖 :        𝐻𝑖,𝑖 = 𝑎{𝑖}.

• 𝐽 = 𝑖, 𝑗 :     𝜀𝑖,𝑗𝐻𝑖,𝑗
2 = 𝑎{𝑖}𝑎{𝑗} − 𝑎 𝑖,𝑗 These determine the adjacency graph of any solution 𝐻 and the values of 𝜀𝑖,𝑗’s.

det𝐻𝐽 =  

𝜎∈𝔖𝐽

−1 𝜎 

𝑖∈𝐽

𝐻𝑖,𝜎(𝑖)

1 2 3 4 1

1 3 2 4 1

1 2 4 3 1


