/ Selection models \

Items labeled 1, 2, ..., N.
Selection model: Random subset of items.

E.g., ferromagnetic / antiferromagnetic Ising models (statistical physics, e.g.,
particles with positive spin)

Objective: Develop a simple model (« 2V parameters), that is tractable,
computationally simple and accurate for given applications.

ML application: Recommender systems.

DPP’s

Model for random binary vectors X = (X4, ..., Xy) € {0,1}"

Equivalently, random subset Y € [N] s.t.

P[J c Y] = det(K;),VJ € [N

] ©

(K]
1 = ] NXN
for some matrix K € RV*N, K €R

EX:P[1€Y] =K, P[1,2€Y] =K;1K;, — K; 5K 5.

If Iy — K is invertible, DPP(K) is also an L-ensemble:

det(L))

PY =/1= e, + D’

v] € [N]
where L = K(Iy — K)™* (& K = L(Iy + L)™Y).

If K is symmetric: DPPs can model repulsive interactions: (X, X5, ..., Xy) are

negatively associated (> negative correlation), i.e.,

cov (F(X,1€5),9(X;,j €T)) <0,
for all disjoint S, T < [N] and coordinatewise nondecreasing functions f, g.

E.g., cov(X;, X;) = —K7; < 0.

In general, cov(X;, X;) = —K; ;K.

Signed DPP: Ki,j = 8i,jKj,i! & j S {—1,1}:

cov(Xl,X) = el]Kz
————> Allow for both positive and negative dependence.

Admissible kernels: When Iy — K is invertible, DPP(K) is well defined iff L =
K(y — K)™ 1 is a Py-matrix (i.e., all its principal minors are nonnegative).

Examples of admissible kernels:
» Any symmetric K with 0 < K < Iy

» Any K =D + 1A for some A € ( ) diagonal matrix D with
Di,i € [A, 1-— /1] and A € [—1,1]
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Identification and learning \

Given Y ~ DPP(K), identify and learn K:
The Principal Minor Assignment Problem

DPP(K) is completely determined by the principal minors of K.

Given aclass 7 € R¥*N PMA asks:
I.  What is the collection of all matrices H € T that have the same list of principal minors as K ?

I1.  Given an available list of prescribed principal minors, how to find a matrix H € T whose principal minors are given by that list, using as few gueries
from that list as possible ?

| © Identification of K

Il & Learning K efficiently

Here, T is the class of signed kernels, i.e., K; ; = ¢; jK;;, & ; € {—1,1}.

More precisely, given a family (a;) C R, characterize § = {H € T:det(H;) = a;,V] < [N],] # @} and find H € § efficiently.

JEIN1J#0

Main idea: « J={i}
- J={ij} el =agay —agp

Hi,i = a{i}.
———> These determine the adjacency graph of any solution H and the values of ¢; ;’s.

Adjacency graph of a solution H € §: Gy = ([N], Ey), with Ey; = {{i,j}:i *+ ,Hy; # 0} = {{i,j}:i * J,amagy — ag jy 0}.
2
* *x 0
H = <* * *) 1/\ H =
0 * x :

Remark: {i,j} € Ex < X;, X; are independent (X; = 1;cy, Where Y ~ DPP(K).)
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To recover the signs of H; ;’s, use higher order principal minors, associated with small positive cyclesin G (i.e.,

detH; = Z (-1)° 1_[ H; s ———> Decompose each ¢ € &, as a product of cycles
O'EG] i€eJ

Key idea:

Example: If C is an induced cycle (i.e., with no chords) in Gy, with vertex set J, then detK; = F(K;;, K7j:i,j € J) £ (1 + [T jyec €:,5) i jyec Ki j

Ideal situation: There is a basis of induces cycles that are all positive. 1 4
1-2-3-4->1
Main issue: Induced cycles may be negative and non induced positive cycles may have more than one positive traveling: 1-3-2-4-1
1-2-4-53-1

Positive travelings can not be dissociated from the principal minors (e.g., Hy, HysH34Hyy tHy3sH3oHyu Hyy tHio Hyy Hys Hso) 2 8

Assumptions:
* H isdenseg, i.e., the graph Gy is complete (this allows to only consider cycles of size 3 and 4)

*  The magnitudes |Hl-, j| are in general position (this allows to separate positive travelings of a given cycle)

—

Theorem: The signs can be (not uniquely) recovered using the a;’s, for #/ < 4.
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/ Algorithm \

Input: Family (a;) c R of prescribed principal minors.

JEIN]j#0
Output: Matrix H € T withdetH; = a;, V] € [N],] # 0.

Step 1: SetH;; = ag; forall i € [N].
Step 2: Set |H; ;| = |agyag;y — ag | forall i,j € [N],i # j.
Step 3: Set¢; ; = Sign(a{i}a{j} — a{ij}) foralli,j € [N],i # j st A;; # 0.

Step 4: Find the set J* of all triples (i, j, k) such that ¢; j&; x&;x = 1 and find the
signof H; ;jH; , H; ;. from Agij k-

Step 5: For all S < [N] if size 4, use ag in order to find [I(; jec.i<; Ki; for all the
(at most three) positive cycles C that have vertex set S.

Step 6: By Gaussian elimination on {+, —}, find a sign assignment of all the H; ;’s
that agree with signs of the products found in Steps 4 and 5.

Conclusions

Theorem: Under the previous assumptions, the set of solutions § is completely
determined by the a;’s, for #] < 4, and there is a polynomial time algorithm that
outputs one solution.

In general, the signs of the H; ;’s would be (not uniquely) determined by the a;’s,

where ] is the vertex set of a positive cycle in some simple family of spanning
cycles.

Open questions:
1. Ingeneral, how to find such a family of spanning cycles efficiently?

2.  What properties (analogous to negative association) are satisfied by signed
DPP’s?

3. For signed DPP’s, the eigenstructure of the kernel no longer plays a significant
role (e.g., for sampling). How to sample a signed DPP efficiently?
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