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Maximum Likelihood Estimation for 

Discrete Determinantal Point Processes

• A determinantal point process (DPP) 𝑌 ⊆ [𝑁] is a random subset s.t.

ℙ 𝐽 ⊆ 𝑌 = det 𝐾𝐽 , ∀𝐽 ⊆ 𝑁

for some symmetric matrix 𝐾 ∈ ℝ𝑁×𝑁 with 0 ≤ 𝐾 ≤ 𝐼𝑁.

• Ex: ℙ 𝑖 ∈ 𝑌 = 𝐾𝑖,𝑖,  ℙ 𝑖, 𝑗 ∈ 𝑌 = 𝐾𝑖,𝑖𝐾𝑗,𝑗 − 𝐾𝑖,𝑗
2 .

• 𝐾 is the kernel of the DPP(𝐾).

• ℙ 𝑌 = 𝐽 = det 𝐾 − 𝐼  𝐽 , ∀𝐽 ⊆ 𝑁 .

• If 𝐾 < 𝐼𝑁, the DPP(𝐾) is also an L-ensemble:

ℙ 𝑌 = 𝐽 =
det(𝐿𝐽)

det(𝐼𝑁 + 𝐿)
, ∀𝐽 ⊆ 𝑁

where 𝐿 = 𝐾 𝐼𝑁 − 𝐾 −1 (⇔ 𝐾 = 𝐿 𝐼𝑁 + 𝐿 −1).

• Alternative representation: 𝑋1, 𝑋2, … , 𝑋𝑁 ∈ 0,1 𝑁, where 𝑋𝑗 ∈ 𝑌 ⇔ 𝑗 ∈

𝑌.

• DPPs can model repulsive interactions: 𝑋1, 𝑋2, … , 𝑋𝑁 are negatively

associated (≫ negative correlation), i.e., 

𝑐𝑜𝑣 𝑓 𝑋𝑖 , 𝑖 ∈ 𝑆 , 𝑔 𝑋𝑗 , 𝑗 ∈ 𝑇 ≤ 0,

for all disjoint 𝑆, 𝑇 ⊆ [𝑁] and coordinatewise nondecreasing functions 𝑓, 𝑔.  

E.g., 𝑐𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = −𝐾𝑖,𝑗
2 ≤ 0.

Learning objective

Given i.i.d. copies 𝑌1, 𝑌2, … , 𝑌𝑛 ~ DPP(𝐾∗) with unknown kernel, estimate 𝐾∗.

Identifiability of 𝑲

DPP 𝐾 = DPP(𝐾′) ⇔ det 𝐾𝐽 = det 𝐾𝐽
′ , ∀𝐽 ⊆ 𝑁

⇔ 𝐾′ = 𝐷𝐾𝐷, for some 𝐷 = Diag ±1,… ,±1 .

⇝ Principal minor assignment problem [RKT15]: Find all symmetric matrices 
that have a prescribed list of principal minors.

I. INTRODUCTION

Approach: Maximum Likelihood Estimation

(Empirical) log-likelihood:

(Population) log-likelihood:

with  𝑝𝐽 =
1

𝑛
# 𝑖: 𝑌𝑖 = 𝐽 and 𝑝𝐽

∗ = ℙ[𝑌 = 𝐽].

MLE:  𝐾 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥  Ψ 𝐾 ⇒  𝐽⊆[𝑁]  𝑝𝐽  𝐾 − 𝐼  𝐽
−1

= 0.

Key point: statistical performance and computation of  𝐾 are bound to the 
geometry of Ψ.

Our primary focus:

Behavior of Ψ around the global maximum 𝐾∗.
↪ statistical performance of the MLE (e.g., the Hessian -𝛻2Ψ 𝐾∗ is the Fisher 
information operator)

Find the other critical points of Ψ and study their nature.
↪ computation of the MLE

 Ψ 𝐾 =  𝐽⊆[𝑁]  𝑝𝐽 𝑙𝑜𝑔|det(𝐾 − 𝐼  𝐽)|

Ψ 𝐾 =  𝐽⊆[𝑁]𝑝𝐽
∗ 𝑙𝑜𝑔|det(𝐾 − 𝐼  𝐽)|

II. GLOBAL MAXIMA OF 𝚿

Theorem 1.2: The Hessian 𝛻2Ψ 𝐾∗ is negative semi-definite.

Definition 1.1: The determinantal graph 𝐺𝐾 = 𝑁 ,𝐸𝐾 of a DPP with

kernel 𝐾 is the unweighted, undirected graph with edge set 𝐸𝐾 =

𝑖, 𝑗 : 𝐾𝑖,𝑗 ≠ 0 . For 𝑖, 𝑗 ∈ [𝑁], we write 𝑖~𝐾𝑗 iff there is a path in 𝐺𝐾 which

connects 𝑖 and 𝑗.

Definition 1.2: A kernel 𝐾 is called irreducible if it is not block diagonal up

to a permutation of its rows and columns.

Fact: 𝐾 is irreducible ⇔ 𝐺𝐾 is connected. Otherwise, the blocks of 𝐾

correspond to the connected components of 𝐺𝐾.

Theorem 1.3: The null space of 𝛻2Ψ 𝐾∗ is

𝒩 𝐾∗ = 𝐻 ∈ 𝒮𝑁: 𝐻𝑖,𝑗 = 0 for all 𝑖, 𝑗 ∈ 𝑁 with 𝑖 ∼𝐾∗ 𝑗 .

The second order derivative of Ψ vanishes in the directions 𝐻 that are off 

blocks of 𝐾∗.

Corollary 1.1: 𝛻2Ψ 𝐾∗ is negative definite iff 𝐾∗ is irreducible.

Proposition 1.1: Let 𝑎 ∈ 0,1 , 𝑏 <
min 𝑎,1−𝑎

2
and let 𝐾∗ be the tridiagonal 

kernel 

𝐾∗ =

𝑎 𝑏 0
𝑏 𝑎 𝑏
0 𝑏 ⋱

… 0
⋱ ⋮
⋱ 0

⋮ ⋱ ⋱
0 … 0

𝑎 𝑏
𝑏 𝑎

:   𝐺𝐾∗ =

Then,            0 < inf
𝐻∈𝒮𝑁,
∥𝐻∥𝐹=1

−𝛻2Ψ 𝐾∗ ≤ 𝑐1𝑒
−𝑐2𝑁.

Theorem 1.4: Let 𝐻 ∈ 𝒩(𝐾∗). Then, 

 𝛻3Ψ 𝐾∗ 𝐻,𝐻,𝐻 = 0,

 𝛻4Ψ 𝐾∗ 𝐻,𝐻,𝐻,𝐻 ≤ 0,

 𝛻4Ψ 𝐾∗ 𝐻,𝐻,𝐻,𝐻 = 0 ⇔ 𝐻 = 0.

Assumption: 0 < 𝐾∗ < 𝐼𝑁: 𝐾∗ is an interior point of the parameter space.

Theorem 1.1: 𝐾∗ is a global maximum and a critical point of Ψ. The kernels

𝐷𝐾∗𝐷,𝐷 = Diag ±1,… ,±1 , are the only global maxima of Ψ.

III. STATISTICAL CONSEQUENCES

The performance of the MLE  𝐾 is measured with the loss function 

ℓ  𝐾,𝐾∗ = inf
𝐷
∥  𝐾 − 𝐷𝐾∗𝐷 ∥𝐹

Theorem 2.1: ℓ  𝐾,𝐾∗

𝑛→∞
0 in probability.

Theorem 2.2: If 𝐾∗ is irreducible, then         ℓ  𝐾,𝐾∗ = 𝑂ℙ
1

𝑛
.

Theorem 2.3 : (Central Limit Theorem) Let 𝐾∗ be irreducible and  𝐾 =  𝐷 𝐾 𝐷

with ∥  𝐾−𝐾∗ ∥𝐹= ℓ  𝐾,𝐾∗ . Then,

𝑛  𝐾 − K∗

𝑛→∞
𝒩 0,𝛻2Ψ 𝐾∗ −1 ,

Remark: The hidden constants in Theorem 2.2 depend on 𝑁 and can be

arbitrarily large (they behave like the inverse of the smallest eigenvalue of the

Fisher information), see Proposition 1.1.

Theorem 2.5: Let 𝐾∗ be block diagonal and 𝑆, 𝑇 be two disjoint blocks. Then,

Theorem 2.4: Let 𝐾∗ be any kernel. Then, 

ℓ(  𝐾,𝐾∗) = 𝑂ℙ 𝑛−
1
6

Question: The kernels 𝐷𝐾∗𝐷,𝐷 = Diag(±1,… ,±1), are critical points or Ψ.

Is it possible to describe the other critical points (explicit form and nature)?

Definition 3.1: Let 𝒫 = (𝐵1, 𝐵2, … , 𝐵𝑝) be a partition of [𝑁]. A partial

decoupling of the DPP 𝑌 with respect to 𝒫 is a random subset 𝑌′ of [𝑁] s.t.

𝑌′ ∩ 𝐵𝑗 , 𝑗 = 1,… , 𝑝 are independent and 𝑌′ ∩ 𝐵𝑗 has the same distribution as

𝑌 ∩ 𝐵𝑗 for all 𝑗 = 1,… , 𝑝.

Proposition 3.1: A partial decoupling of the DPP 𝑌 with respect to a partition

𝒫 = (𝐵1, 𝐵2, … , 𝐵𝑝) is a DPP with block diagonal kernel (up to permutation

of the rows and columns)

𝐾(𝒫) =

𝐾𝐵1
∗

𝐾𝐵2
∗

⋱
𝐾𝐵𝑝
∗

Theorem 3.1: For all partitions 𝒫 of [𝑁], 𝐾(𝒫) is a critical point of Ψ, i.e., it

solves the equation  𝐽⊆[𝑁] 𝑝𝐽
∗ 𝐾 − 𝐼  𝐽

−1
= 0. Unless 𝐾(𝒫) = 𝐷𝐾∗𝐷 for some

𝐷 = Diag(±1,… ,±1), 𝐾(𝒫) is a saddle point of Ψ.

IV. OTHER CRITICAL POINTS

Proposition 3.2: Let K be a critical point of Ψ. Then, 𝐾𝑗,𝑗 = 𝐾𝑗,𝑗
∗ , ∀𝑗 ∈ 𝑁 .

Conjecture 3.1: All critical points of Ψ are of the form 𝐷𝐾(𝒫)𝐷, for some

partition 𝒫 of 𝑁 and some 𝐷 = Diag(±1,… ,±1).

Remark: For all partitions 𝒫 of 𝑁 and all 𝐷0 = Diag(±1,… ,±1) ,

𝐷0𝐾
(𝒫)𝐷0 is the average (with equal weights) of kernels of the form

𝐷𝐾∗𝐷,𝐷 = Diag(±1,… ,±1).

V. CONCLUSION AND OPENING REMARKS

• The rate of estimation of the MLE is never worse than 𝑛−1/6.

• If 𝐾∗ is irreducible, the MLE achieves the rate 𝑛−1/2. Otherwise, the MLE

estimates the diagonal blocks of 𝐾∗ at the rate 𝑛−1/2 and the off diagonal

blocks at the rate 𝑛−1/6.

• However, the rates may be affected by very large constants in high

dimensions.

• Computation of the MLE is a non convex optimization problem. However,

it seems that the only critical points of the population log-likelihood are the

global maxima and saddle points, which may partially solve computational

issues.

• Another estimator, obtained by a method of moments, consists of

estimating principal minors of 𝐾∗ and follow the principal minor

assignment problem to reconstruct 𝐾∗ : It is shown to have good

computational and statistical properties [UBMR17].
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Notation lexicon

𝑁 : set of integers from 1 to 𝑁.

𝑀𝐽: submatrix of 𝑀 with rows and columns indexed in 𝐽.

𝐼𝑁: identity matrix of size N.

𝐼  𝐽: diagonal matrix with j-th diagonal entry 1 if 𝑗 ∉ 𝐽, 0 otherwise.

∥⋅∥𝐹: Frobenius norm

𝑀𝑆,𝑇: submatrix of 𝑀 with rows indexed in S and columns indexed in T.

 inf
𝐷
∥  𝐾𝑆,𝑇− 𝐷𝐾∗𝐷 𝑆,𝑇 ∥𝐹= 𝑂ℙ 𝑛−

1

6 ,

 inf
𝐷
∥  𝐾𝑆− 𝐷𝐾∗𝐷 𝑆 ∥𝐹= 𝑂ℙ 𝑛−

1

2 .

d


