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. INTRODUCTION

Definitions: DPP

A determinantal point process (DPP) Y < [N] is a random subset s.t.
P[J c Y] = det(K;), V] S [N]

for some symmetric matrix K € RY*N with 0 < K < I.
Ex: P[i € Y] = K;;, Pli,j €Y] = K;;K; j — K.
K is the kernel of the DPP(K).

PlY =J] = |det(K —I})|, ¥J € [N].

If K < I, the DPP(K) is also an L-ensemble:

det(L;)

PV =)= Gettin + )’

whereL=K(y —K) ' (e K =Ly +L)™).
Alternative representation: (X;, X,, ..., Xy) € {0,1}", where X; €Y & j €
Y.

DPPs can model repulsive interactions: (X4, X5, ..., X)) are negatively
associated (> negative correlation), i.e.,

cov (f(Xl-,i € S),g(Xj,j € T)) <0,
for all disjoint S, T < [N] and coordinatewise nondecreasing functions f, g.
E.g., COU(Xi,Xj) = —Kg] < 0.

Learning objective

Given i.i.d. copies Y3, Y,, ..., Y,, ~ DPP(K™) with unknown kernel, estimate K*.

Identifiability of K

DPP(K) = DPP(K") & det(K;) = det(K/),V/] S [N]
& K' = DKD, for some D = Diag(+1, ..., +1).

> Principal minor assignment problem [RKT15]: Find all symmetric matrices
that have a prescribed list of principal minors.

Approach: Maximum Likelihood Estimation

P(K) = Xjciw Py logldet(K —Ip)|

(Population) log-likelihood: W(K) = X.;cnvjp; log|det(K — Ij)|

(Empirical) log-likelihood:

with §; = ~#{i:¥; = J}and p; = P[Y =]].

MLE: K € argmax P(K) = X,cn0y(K - I]-)_1 = 0.

Key point: statistical performance and computation of K are bound to the
geometry of W.

Our primary focus:

Behavior of W around the global maximum K~.
& statistical performance of the MLE (e.g., the Hessian -V2W(K*) is the Fisher
information operator)

Find the other critical points of W and study their nature.
< computation of the MLE

Il. GLOBAL MAXIMA OF ¥

[Assumption: 0 < K* < Iy: K" is an interior point of the parameter space.]

Theorem 1.1: K™ is a global maximum and a critical point of W. The kernels

DK*D,D = Diag(+1, ..., 1), are the only global maxima of V.

Indeed, for all kernel K, W(K*) — W(K) = KL(DPP(K*), DPP(K)).
In addition, VW(K*) = %,civpj(K* = 1) = 0.
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Theorem 1.2: The Hessian V2W(K*) is negative semi-definite.

Definition 1.1: The determinantal graph Gx = (|[N],Ex) of a DPP with

kernel K Is the unweighted, undirected graph with edge set Eyx =
{{i,j}: K;;# O}. For i,j € [N], we write i~ j Iff there Is a path in Gx which

connects i and j.

Definition 1.2: A kernel K is called irreducible if it is not block diagonal up

to a permutation of its rows and columns.

Fact.: K is irreducible & Gg Is connected. Otherwise, the blocks of K

correspond to the connected components of G.

Theorem 1.3: The null space of V2W(K*) is
4 )

N(K*) ={H € Sy:H;; = 0foralli,j € [N] with i ~g- j}.

. J

The second order derivative of W vanishes in the directions H that are off
blocks of K*.

Corollary 1.1: V2W(K*) is negative definite iff K* is irreducible.

min(a,1—a)

Proposition 1.1: Leta € (0,1), |b| <

kernel
\
o |:

Y w B
Oba/

0 < inf —V?WY(K*) < ce 2N,
HEeSY,

IHlIF=1

and let K* be the tridiagonal

Theorem 1.4: LetH € N (K™"). Then,

(> V3W(KY)(H, H, H) = 0,

> VAW(K*)(H,H,H,H) <0,

> VAY(K*)(H,H,H,H) =0 H =0

[ll. STATISTICAL CONSEQUENCES

v

The performance of the MLE K is measured with the loss function

¢(K,K*) =inf | K = DK*D IIr

Theorem 2.1: #(K,K*) — 0 in probability.

N—00

Theorem 2.2: If K* is irreducible, then [f(I?,K*) = Op (\/iﬁ) ]

Theorem 2.3 : (Central Limit Theorem) Let K* be irreducible and K = DKD

with | K—K* ll= ¢(K,K*). Then,
(" )
V(K = K*) == N (0, 72W(K) ™),

- J

Remark: The hidden constants in Theorem 2.2 depend on N and can be
arbitrarily large (they behave like the inverse of the smallest eigenvalue of the
Fisher information), see Proposition 1.1.

Theorem 2.4: Let K* be any kernel. Then,

4 X )
2R, K*) = 0p(n76)

\- J

Theorem 2.5: Let K* be block diagonal and S, T be two disjoint blocks. Then,

2 _ )
> inf | Rsr—(DK*D)sr llp= Op ne)

~ _1
> inf | Rs—(DK*D)s lly= 0p(n 2) .
\ J

V. OTHER CRITICAL POINTS

Question: The kernels DK*D, D = Diag(%1, ..., £1), are critical points or .

Is it possible to describe the other critical points (explicit form and nature)?

Definition 3.1: Let P = (By,B;,...,B,) be a partition of [N]. A partial

decoupling of the DPP Y with respect to 2 is a random subset Y’ of [N] s.t.

Y'nB;,j=1,..,p are independent and Y' N B; has the same distribution as

YnB;forallj=1,..,p.

Proposition 3.1: A partial decoupling of the DPP Y with respect to a partition

P = (By,By, ..., By) Is a DPP with block diagonal kernel (up to permutation

(5 \

K;,
K3, /

Theorem 3.1: For all partitions P of [N], K is a critical point of W, i.e., it

of the rows and columns)

K(:P) =

solves the equation ¥ ;cv pj (K — I;)”" = 0. Unless K® = DK*D for some

D = Diag(+1,...,+1), K® is a saddle point of ¥.

Proposition 3.2: Let K be a critical point of W. Then, K; ; = K;;,Vj € [N].

Conjecture 3.1: All critical points of W are of the form DK®)D, for some

partition P of [N] and some D = Diag(+1, ..., +1).

Remark: For all partitions 2 of [N] and all D, = Diag(+1,...,+1),

DoK®P)D, is the average (with equal weights) of kernels of the form

DK*D,D = Diag(#1, ..., x1).

V. CONCLUSION AND OPENING REMARKS

The rate of estimation of the MLE is never worse than n~1/6.

If K* is irreducible, the MLE achieves the rate n=1/2. Otherwise, the MLE
estimates the diagonal blocks of K* at the rate n='/2 and the off diagonal
blocks at the rate n=1/°.

However, the rates may be affected by very large constants in high
dimensions.

Computation of the MLE is a non convex optimization problem. However,
It seems that the only critical points of the population log-likelihood are the
global maxima and saddle points, which may partially solve computational
ISSUES.

Another estimator, obtained by a method of moments, consists of
estimating principal minors of K* and follow the principal minor
assignment problem to reconstruct K* : It Is shown to have good
computational and statistical properties [UBMR17].
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Notation lexicon

|N]: set of integers from 1 to N.

M;: submatrix of M with rows and columns indexed in J.

Iy : 1dentity matrix of size N.

I;: diagonal matrix with j-th diagonal entry 1 if j & J, 0 otherwise.
|1l =: Frobenius norm

Mg : submatrix of M with rows indexed in S and columns indexed in T.




