

Rates of Estimation for Discrete Determinantal Point Processes

V.-E. Brunel, A. Moitra, P. Rigollet, J. Urschel

COLT 2017, Amsterdam

Discrete DPPs

Random variables on the hypercube $\{0, 1\}^N$, represented as subsets of $[N]$.

$$10011010110100100010 \leftrightarrow \{1,4,5,7,9,10,12,15,19\}$$

$$00110101100100100010 \leftrightarrow \{3,4,6,8,9,12,15,19\}$$

$$10010001000101001101 \leftrightarrow \{1,4,8,12,14,17,18,20\}$$

...

$$00100101100000110100 \leftrightarrow \{3,6,8,9,15,16,18\}$$

Discrete DPPs

- Probabilistic model for correlated Bernoulli r.v.
- Feature repulsion (negative association)

Definition Random subset $Y \subseteq [N]$,

$$\mathbb{P}[J \subseteq Y] = \det(K_J), \quad \forall J$$

$K \in \mathbb{R}^{N \times N}$, symmetric, $0 \leq K \leq I$

- $K_{i,j} \rightarrow$ repulsion between items i and j .
- PMF: $\mathbb{P}[Y = J] = |\det(K - I_{\bar{J}})|$

Goal

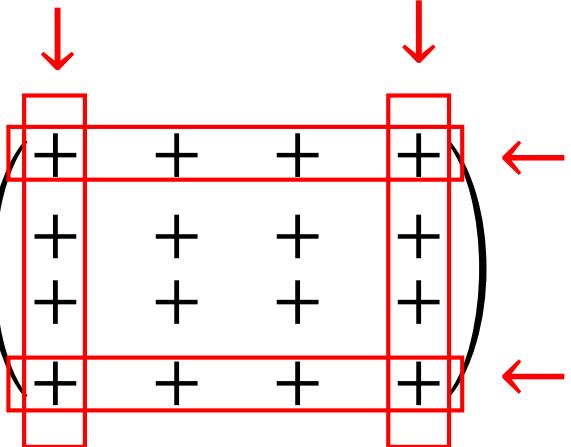
- Given $Y_1, Y_2, \dots, Y_n \stackrel{\text{iid}}{\sim} \text{DPP}(K^*)$, estimate K^* .
- **Approach:** Maximum Likelihood Estimator.
- **Question:** Rate of convergence of the MLE ?

Identification

- $\text{DPP}(K) = \text{DPP}(K^*) \Leftrightarrow \det(K_J) = \det(K_J^*) , \forall J \subseteq [N]$

$$\Leftrightarrow K = DK^*D \text{ for some } D = \begin{pmatrix} \pm 1 & & & & 0 \\ & \pm 1 & & & \\ 0 & & \ddots & & \\ & & & \ddots & \pm 1 \end{pmatrix}.$$

- E.g.: $K^* = \begin{pmatrix} + & + & + & + \\ + & + & + & + \\ + & + & + & + \\ + & + & + & + \end{pmatrix}$



$$\rightsquigarrow DK^*D = \begin{pmatrix} + & - & - & + \\ - & + & + & - \\ - & + & + & - \\ + & - & - & + \end{pmatrix}$$

Measure of the error of an estimator \widehat{K} :

$$\ell(\widehat{K}, K^*) = \min_D \|\widehat{K} - DK^*D\|_F$$

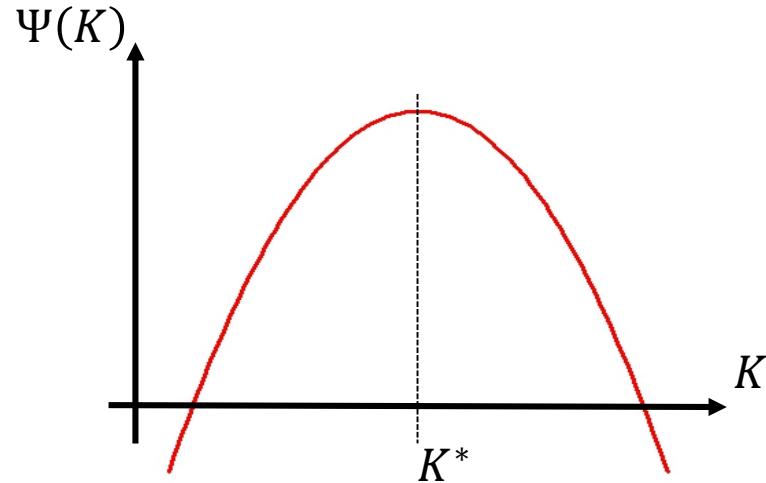
Maximum likelihood estimation

- **Log-likelihood:** $\widehat{\Psi}(K) = \sum_{J \subseteq [N]} \widehat{p}_J \ln |\det(K - I_{\bar{J}})|$
- **MLE:** $\widehat{K} \in \operatorname{argmax} \widehat{\Psi}(K)$

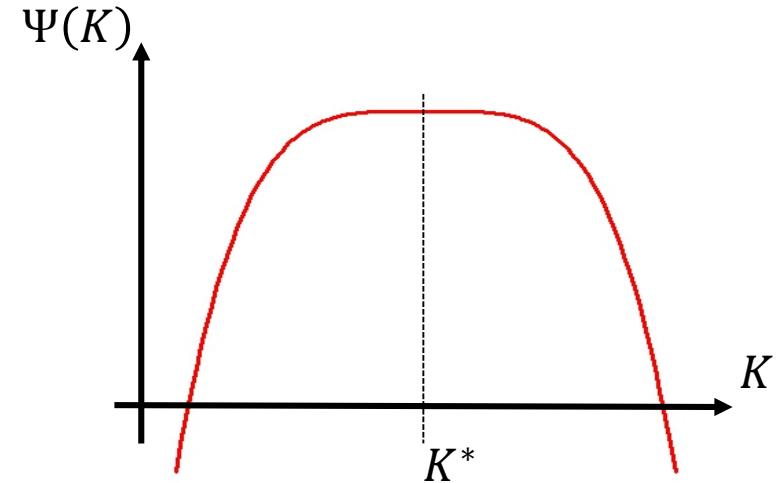
$$\begin{aligned}\Psi(K) &\triangleq \mathbb{E}[\widehat{\Psi}(K)] = \sum_{J \subseteq [N]} p_J^* \ln |\det(K - I_{\bar{J}})| \\ &= \Psi(K^*) - KL(DPP(K^*), DPP(K))\end{aligned}$$

Likelihood geometry

Fisher information: $-\nabla^2\Psi(K^*)$



$$\nabla^2\Psi(K^*) < 0$$



$$\nabla^2\Psi(K^*) = 0$$

What is the order of the first non degenerate derivative of Ψ at $K = K^*$?

Determinantal Graphs & Irreducibility

Definition

$$G = ([N], E): \quad \{i, j\} \in E \Leftrightarrow K_{i,j}^* \neq 0.$$

- K^* is **irreducible** iff G is connected.
- Otherwise, K^* is block diagonal.
- Rk: K^* is block diagonal $\Rightarrow Y = \text{union of independent DPPs}$
- Write $i \sim j$ when i and j are connected in G .

Main Results: Irreducible case

Theorem 1

K^* irreducible $\Leftrightarrow \nabla^2 \Psi(K^*)$ is definite negative

Statistical consequences:

- $\ell(\widehat{K}, K^*) = O_{\mathbb{P}}(n^{-\frac{1}{2}})$
- CLT

Main Results: Block diagonal case (1)

Theorem 2

$$\text{Ker}(\nabla^2 \Psi(K^*)) = \{H \in \mathbb{R}^{N \times N} : H_{i,j} = 0, \forall i \sim j\}$$

$\nabla^2 \Psi(K^*)$ is negative definite along directions supported on the blocks of K^* .

Theorem 3

For $H \in \text{Ker}(\nabla^2 \Psi(K^*)) \setminus \{0\}$:
$$\begin{cases} \nabla^3 \Psi(K^*)(H^{\otimes 3}) = 0 \\ \nabla^4 \Psi(K^*)(H^{\otimes 4}) < 0 \end{cases}$$

Main Results: Block diagonal case (2)

Statistical consequences:

- $\ell(\widehat{K}, K^*) = O_{\mathbb{P}}(n^{-\frac{1}{6}})$
- $\ell(\widehat{K}_S, K_S^*) = O_{\mathbb{P}}(n^{-\frac{1}{2}})$ for all blocks S of K^* .

Conclusions

- Rates of convergence of the MLE:

$$\begin{cases} n^{-1/2} & \text{if } K^* \text{ is irreducible} \\ n^{-1/6} & \text{otherwise} \end{cases}$$

- Rate only determined by connectedness of the **determinantal graph**
- Hidden constants can be arbitrarily large in N : e.g., if G is a path graph
- In another paper* we show that the sample complexity of a method-of-moment estimator is determined by the *cycle sparsity* of G .