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Discrete DPPs

Random variables on the hypercube {0, 1}V, represented as subsets of IN].
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Discrete DPPs

* Probabilistic model for correlated Bernoulli r.v.

* Feature repulsion (negative association)

Definition Random subsetY C [N],

NXN :
P[J € Y] = det(K;), VJ K € RV*N symmetric, 0 < K < 1

* K; ; & repulsion between items i and j.

e PMF: PlY =]]| = ‘det(K - If)|



Goal

* Given Y, Y, ..., Y, © DPP(K*), estimate K*.
* Approach: Maximum Likelihood Estimator.

* Question: Rate of convergence of the MLE ?



|dentification

» DPP(K) = DPP(K*) © det(K;) = det(K;), V] S [N]
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Measure of the error of an estimator K: [f(ﬁ, K*) = mDin I|K — DK*D||p ]




Maximum likelihood estimation

e Log-likelihood: P(K) =) D; ln‘det(K — Ij)‘
J < N]

* MLE: K € argmax P(K)

Y(K) 2 E[P(K)] = X pj In[det(K — ;)]

J € [N]

= Y(K*) — KL(DPP(K*),DPP(K))




Likelihood geometry

Fisher information: —V2W(K*)

Y(K), Y(K),

/ K" o / K" U

72¥(K*) < 0 V2Y(K*) = 0

What is the order of the first non degenerate derivativeof W at K = K™ ?



Determinantal Graphs & Irreducibility

Definition
G = (IN],E): {i,j}EE & K{fj * 0.

K" is irreducible iff G is connected.
e Otherwise, K™ is block diagonal.
* Rk: K™ is block diagonal = Y = union of independent DPPs

* Write i ~ j when i andj are connected in G.



Main Results: Irreducible case

Theorem 1

K* irreducible © V2W(K™*) is definite negative

Statistical consequences:
~ _1
> ¢(R k") = 0pn2)

»> CLT



Main Results: Block diagonal case (1)

Theorem 2
Ker(V2W(K*)) ={H € RVN:H;; = 0,Vi ~ j}

V2W(K*) is negative definite along directions supported on the blocks of
K*.

Theorem 3
73W(K*)(H®3) =0

For H € Ker(V2W(K*)) \ {0}: |7 w (k") (H®*) < 0




Main Results: Block diagonal case (2)

Statistical consequences:

> 2R k) = 0p(n7e)

1

> ¢(Rs, k) = 0p(n2)  for all blocks S of K*.



Conclusions

* Rates of convergence of the MLE:

(n~1/2 if K*is irreducible

\

1/6

- otherwise

* Rate only determined by connectedness of the determinantal graph

* Hidden constants can be arbitrarily large in N: e.g., if G is a path graph

* In another paper” we show that the sample complexity of a method-of-moment

estimator is determined by the cycle sparsity of G.
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