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Chapter 9: Introduction to Survey Sampling



Introduction (1)

I Consider a population [N] = {1, . . . ,N} of N individuals.

I Each individual k ∈ [N] has a qualitative or quantitative
characteristic yk , which is deterministic.

I Examples in sociology/economics: yk is the salary or
individual k , or his/her age, or whether he/she is employed, or
the color of his/her eyes, etc...

I Examples in other fields: The individuals are all webpages on
the internet and yk is the number of visits of page k in the
past ten days, or the number of pages linked to page k, or the
individuals are US American farms and yk is the production of
farm k, etc...



Introduction (2)

I If yk is qualitative, we transform it into a binary quantity
(e.g., yk = 1 if individual k has blue eyes, 0 otherwise).

I We are interested in knowing the total T =
∑
k∈[N]

yk , the

average ȳ =
1

N

∑
k∈[N]

yk or some other quantity

θ = θ(y1, . . . , yN).

I In practice, N may be too large and even unknown. Hence, it
is too costly or impossible to compute θ exactly.

I Solution: Sample a smaller proportion of individuals within
the population.



Introduction (3)

I If S ⊆ [N], one can define, for instance:

T̂S =
N

|S |
∑
k∈S

yk , ȳS =
1

|S |
∑
k∈S

yk

and, in general,
θ̂ = θ̂ ({yk : k ∈ S}) .

I Question: How to choose S ?

I Choose a random subset S ⊆ [N].

I The probability distribution of S chosen by the practitioner is
called the design of the survey.



Sources of error

Running a survey leads to an estimation error. This error has
multiple sources:

I Sampling: one does not collect the whole information
contained in the population.

I Collection errors: The yk ’s may be collected with noise
(measurement errors, mistakes by the respondents of the
survey, etc...)

I Missing data: Some of the yk ’s, for k ∈ S , may be unavailable
(e.g., sampled people who may not want to answer).

Goal: Control these errors and find good estimators of the total
and/or the average.



Sampling designs (1)

Some designs commonly used:

I Choose a fixed n < N and draw S uniformly in the collection
of subsets of [N] of size n:

P[S = s] =
1(N
n

) , ∀s ⊂ [N] with |s| = n.

This is equivalent to sampling n individuals randomly without
replacement.

I Choose a fixed p ∈ (0, 1) and let I1, . . . , IN
i .i .d .∼ Ber(p). Take

S = {k ∈ [N] : Ik = 1}.

The size of S is random: It is binomial with parameter (N, p).
In particular, E[|S |] = Np.



Sampling designs (2)

I A partition U1, . . . ,Ud of the population [N] may be available
and relevant to the problem (e.g., d = 50 and Uj is the
population in State j , for j = 1, . . . , 50). One can choose

S = S1 ∪ . . . ∪ Sd ,

where each Sj is a random subset of Uj .

I One may want to first partition each of the previous Uj (e.g.,
into men and women).

I If a partition U1, . . . ,Ud of [N] is available, one may choose
randomly fewer elements of this partition and draw random
subsets Sj ⊆ Uj , for the selected Uj ’s.



Inclusion probabilities (1)

I Denote by p(s) = P[S = s], for s ⊆ [N] (pdf of S).

I For k ∈ [N], define

πk = P[S 3 k] =
∑

s⊆[N] : s3k

p(s),

i.e., the probability that individual k is sampled.

I For k , l ∈ [N], define

πk,l = P[S ⊇ {k , l}] =
∑

s⊆[N] : s⊇{k,l}

p(s),

i.e., the probability that individuals k and l are both sampled.



Inclusion probabilities (2)

I For k ∈ [N], denote by Ik = 1S3k .

I Then, for all k , l ∈ [N],

I E[Ik ] = πk ,

I Var(Ik) = πk(1− πk),

I ∆k,l := cov(Ik , Il) = πk,l − πkπl .

I

N∑
k=1

πk = E[|S |],
N∑

k,l=1

πk,l = E[|S |2],
N∑

k,l=1

∆k,l = Var(|S |).

I E.g., when n individuals are sampled without replacement,
then for all k 6= l ∈ [N],

|S | = n a.s., πk =
n

N
, πk,l =

n

N

n − 1

N − 1
.



Estimation (1)

I In the sequel, we are only interested in the estimation of

T =
∑
k∈[N]

yk and ȳ =
1

N

∑
k∈[N]

yk .

I We assume that πk > 0, ∀k ∈ [N] (i.e., no cut-offs in the
population, no unreachable individual, list of individuals not
out of date).

I Horvitz-Thompson’s estimators of T and ȳ :

T̂HT =
∑
k∈S

yk
πk

=
∑
k∈[N]

yk
πk

Ik , ̂̄yHT =
T̂HT

N
.

(Note: The yk ’s, k ∈ S are observed and the πk ’s, k ∈ [N] are
decided beforehand, they depend on the sampling design.)



Estimation (2)

I T̂HT is unbiased.

I Variance of T̂HT :

Var(T̂HT ) =
∑

k,l∈[N]

ykyl
πkπl

∆k,l .

I If πk,l > 0, ∀k, l ∈ [N], there is an unbiased estimator of the

variance of T̂HT :

V̂ =
∑
k,l∈S

ykyl
πkπl

∆k,l

πk,l
.

I In general, this estimator is written in the following way and it
is biased:

V̂ =
∑

k,l∈S:πk,l 6=0

ykyl
πkπl

∆k,l

πk,l
.



Estimation (3)

I E
[
V̂
]

= Var(T̂HT ) +
∑

k,l∈[N]:πk,l=0

ykyl .

I If the size of S is fixed, then Var(T̂HT ) can be written as:

Var(T̂HT ) = −1

2

∑
k,l∈[N]

(
yk
πk
− yl
πl

)2

∆k,l .

I In that case, another estimator of the variance is then:

Ṽ = −1

2

∑
k,l∈S :πk,l 6=0

(
yk
πk
− yl
πl

)2 ∆k,l

πk,l
.

I E
[
Ṽ
]

= Var(T̂HT )− 1

2

∑
k,l∈[N]:πk,l=0

(
yk
πk
− yl
πl

)2

πkπl .



Confidence intervals

I How to compute confidence intervals for T ?

I In practice, practitioners often use

I =

[
T̂HT − q1−α/2

√
max(V̂ , 0), T̂HT + q1−α/2

√
max(V̂ , 0)

]
,

where q1−α/2 is the (1− α/2)-quantile of N (0, 1).

I B Depending on the design, it is not always the case that

T̂HT − T√
V̂

is approximately standard Gaussian.

I Alternative: bootstrap.



Sampling n individuals without replacement (1)

I P[S = s] =


1

(Nn)
if |s| = n

0 otherwise.

I πk = n
N , ∀k ∈ [N];

I πk,l = n(n−1)
N(N−1) , ∀k , l ∈ [N] with k 6= l .

I T̂HT =
N

n

∑
k∈S

yk .

I ̂̄yHT =
1

n

∑
k∈S

yk : Mean value of the yk ’s in S .



Sampling n individuals without replacement (2)

I Var(T̂HT ) = N
1− f

f
σ2,

I Ṽ = N
1− f

f
σ̂2, where:

I f = n/N;

I σ2 =
1

N − 1

∑
k∈[N]

(yk − ȳ)2 is the empirical variance of the yk ’s

in the population;

I σ̂2 =
1

n − 1

∑
k∈S

(yk − ȳS)2 is the empirical variance of the yk ’s

in the random sample S .

I Remark: σ̂2 is an unbiased estimator of σ2.



Sampling n individuals without replacement (3)

Remark: If y1, . . . , yN are binary (i.e., 0 or 1):

I Quadratic risk of ȳHT (bias-variance decomposition):

E
[
(̂̄yHT − ȳ)2

]
=

N − n

N − 1

ȳ(1− ȳ)

n
.

I When the individuals were sampled with replacement, which
corresponded to an i.i.d. Bernoulli statistical model, the MLE
p̂ satisfied (with p = ȳ):

E
[
(p̂ − p)2

]
=

p(1− p)

n
.

I Hence, sampling without replacement is more precise than
with replacement.



Algorithms for sampling without replacement (1)

Selection draw by draw

For i = 1, . . . , n, select randomly an individual among those who
have not been selected already.

# Complexity O(nN).

Random sort

I Associated independently a random variable Ui ∼ U([0, 1]) to
individual i , for each i ∈ [N].

I Sort the individuals by their Ui ’s.

I Select the n first.

# Complexity O(N lnN) (to sort N variables).



Algorithms for sampling without replacement (2)

Select-reject

I Initialize j = 0.

I For k = 1, . . . ,N: With probability
n − j

N − k + 1
, select

individual k and set j ← j + 1.

# Complexity O(N).

Reservoir method

I Set S = {1, . . . , n}.

I For each k = n + 1, . . . ,N: With probability n
k choose k , draw

randomly (uniformly) an element in S and replace it with k .

# Average complexity O(n2 lnN) but does not require knowledge
of N from the beginning.



Algorithms for sampling with given inclusion probabilities
(1)

I The practitioner may want to design a sample that has given
inclusion probabilities πk , k = 1, . . . ,N.

I E.g., if the individuals are companies, one may want to assign
a larger probability to larger companies.

I If the sizes e1, . . . , eN (numbers of employees) of the
companies are known, how to chose a design that satisfies

πk ∝ ek , k = 1, . . . ,N ?

I Remark: any design that satisfies these restrictions will give
the same Horwitz-Thompson estimators. The bias will be
zero, only the variance will change, according to the values of
the πk,l that will result from the design choice.



Algorithms for sampling with given inclusion probabilities
(2)

Algorithm 1

I Sample U1, . . . ,UN
i .i .d .∼ U([0, 1]).

I For k = 1, . . . ,N, choose k if Uk ≤ πk .

# Large variance for the HT estimator.
# In practice, this is useful when individuals show up one at a
time.



Algorithms for sampling with given inclusion probabilities
(3)

If
N∑
i=1

πi = n and we want a random sample of fixed size n:

Algorithm 2 to get a sample of fixed size n

I Set V0 = 0 and Vk =
k∑

i=1

πi , for k ∈ [N].

I Sample U ∼ U([0, 1]).

I For k = 1, . . . ,N, choose k if Vk−1 ≤ U + i < Vk for some
i ∈ {0, . . . , n − 1}.

# The sample has fixed size n, determined beforehand.
# Drawback: This algorithm is very rigid (very little randomness
in the choice of S , all depends only on one random variable U).



Conclusions

I A total or an average among a large population is sought.

I A subset of the population is sampled randomly, according to
a given sampling design.

I We proposed a few sampling algorithms.

I We proposed unbiased estimators and computed estimators of
their variances when the answers of the respondents were
collected perfectly.

I What if some answers are incorrect ? If some answers are
missing ?


