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Chapter 8: Bayesian Statistics



The Bayesian approach (1)

I So far, we have studied the frequentist approach of statistics.

I The frequentist approach:

I Observe data

I These data were generated randomly (by Nature, by
measurements, by designing a survey, etc...)

I We made assumptions on the generating process (e.g., i.i.d.,
Gaussian data, smooth density, linear regression function,
etc...)

I The generating process was associated to some object of
interest (e.g., a parameter, a density, etc...)

I This object was unknown but fixed and we wanted to find it:
we either estimated it or tested a hypothesis about this object,
etc...



The Bayesian approach (2)

I Now, we still observe data, assumed to be randomly generated
by some process. Under some assumptions (e.g., parametric
distribution), this process is associated with some fixed object.

I We have a prior belief about it.

I Using the data, we want to update that belief and transform
it into a posterior belief.



The Bayesian approach (3)

Example

I Let p be the proportion of woman in the population.

I Sample n people randomly with replacement in the population
and denote by X1, . . . ,Xn their gender (1 for woman, 0
otherwise).

I In the frequentist approach, we estimated p (using the MLE),
we constructed some confidence interval for p, we did
hypothesis testing (e.g., H0 : ”p = .5” v.s. H1 : ”p 6= .5”).

I Before analyzing the data, we may believe that p is likely to
be close to 1/2.

I The Bayesian approach is a tool to update our prior belief
using the data.



The Bayesian approach (4)
Example (continued)

I Our prior belief about p can be quantified:

I E.g., we are 90% sure that p is between .4 and .6, 95% that it
is between .3 and .8, etc...

I Hence, we can model our prior belief using a distribution for
p, as if p was random.

I In reality, the true parameter is not random ! However, the
Bayesian approach is a way of modeling our belief about the
parameter by doing as if it was random.

I E.g., p ∼ B(a, a) (Beta distribution) for some a > 0.

I This distribution is called the prior distribution.



The Bayesian approach (5)

Example (continued)

I In our statistical experiment, X1, . . . ,Xn are assumed to be
i.i.d. Bernoulli r.v. with parameter p conditionally on p.

I After observing the available sample X1, . . . ,Xn, we can
update our belief about p by taking its distribution
conditionally on the data.

I The distribution of p conditionally on the data is called the
posterior distribution.

I Here, the posterior distribution is

B

(
a +

n∑
i=1

Xi , a + n −
n∑

i=1

Xi

)
.



The Bayes rule and the posterior distribution (1)

I Consider a probability distribution on a parameter space Θ
with some pdf π(·): the prior distribution.

I Let X1, . . . ,Xn be a sample of n random variables.

I Denote by pn(·|ϑ) the joint pdf of X1, . . . ,Xn conditionally on
ϑ, where ϑ ∼ π.

I Usually, one assumes that X1, . . . ,Xn are i.i.d. conditionally
on ϑ.

I The conditional distribution of ϑ given X1, . . . ,Xn is called
the posterior distribution. Denote by π(·|X1, . . . ,Xn) its pdf.



The Bayes rule and the posterior distribution (2)

I Bayes’ formula states that:

π(θ|X1, . . . ,Xn) ∝ π(θ)pn(X1, . . . ,Xn|θ), ∀θ ∈ Θ.

I The constant does not depend on θ:

π(θ|X1, . . . ,Xn) =
π(θ)pn(X1, . . . ,Xn|θ)∫

Θ pn(X1, . . . ,Xn|t)dπ(t)
, ∀θ ∈ Θ.



The Bayes rule and the posterior distribution (3)

In the previous example:

I π(p) ∝ pa−1(1− p)a−1, p ∈ (0, 1).

I Given p, X1, . . . ,Xn
i .i .d .∼ Ber(p), so

pn(X1, . . . ,Xn|θ) = p
∑n

i=1 Xi (1− p)n−
∑n

i=1 Xi .

I Hence,

π(θ|X1, . . . ,Xn) ∝ pa−1+
∑n

i=1 Xi (1− p)a−1+n−
∑n

i=1 Xi .

I The posterior distribution is

B

(
a +

n∑
i=1

Xi , a + n −
n∑

i=1

Xi

)
.



Non informative priors (1)

I Idea: In case of ignorance, or of lack of prior information, one
may want to use a prior that is as little informative as
possible.

I Good candidate: π(θ) ∝ 1, i.e., constant pdf on Θ.

I If Θ is bounded, this is the uniform prior on Θ.

I If Θ is unbounded, this does not define a proper pdf on Θ !

I An improper prior on Θ is a measurable, nonnegative function
π(·) defined on Θ that is not integrable.

I In general, one can still define a posterior distribution using an
improper prior, using Bayes’ formula.



Non informative priors (2)

Examples:

I If p ∼ U(0, 1) and given p, X1, . . . ,Xn
i .i .d .∼ Ber(p) :

π(p|X1, . . . ,Xn) ∝ p
∑n

i=1 Xi (1− p)n−
∑n

i=1 Xi ,

i.e., the posterior distribution is

B

(
1 +

n∑
i=1

Xi , 1 + n −
n∑

i=1

Xi

)
.

I If π(θ) = 1,∀θ ∈ R and given ϑ, X1, . . . ,Xn
i .i .d .∼ N (ϑ, 1):

π(θ|X1, . . . ,Xn) ∝ exp

(
−1

2

n∑
i=1

(Xi − θ)2

)
,

i.e., the posterior distribution is

N
(
X̄n,

1

n

)
.



Non informative priors (3)

I Jeffreys prior:
πJ(θ) ∝

√
det I (θ),

where I (θ) is the Fisher information matrix of the statistical
model associated with X1, . . . ,Xn in the frequentist approach
(provided it exists).

I In the previous examples:

I Ex. 1: πJ(p) ∝ 1√
p(1−p)

, p ∈ (0, 1): the prior is B(1/2, 1/2).

I Ex. 2: πJ(θ) ∝ 1, θ ∈ R is an improper prior.



Non informative priors (4)

I Jeffreys prior satisfies a reparametrization invariance principle:
If η is a reparametrization of ϑ (i.e., η = φ(ϑ) for some
one-to-one map φ), then the pdf π̃(·) of η satisfies:

π̃(η) ∝
√

det Ĩ (η),

where Ĩ (η) is the Fisher information of the statistical model
parametrized by η instead of ϑ.



Bayesian confidence regions

I For α ∈ (0, 1), a Bayesian confidence region with level α is a
random subset R of the parameter space Θ, which depends
on the sample X1, . . . ,Xn, such that:

P[ϑ ∈ R|X1, . . . ,Xn] = 1− α.

I Note that R depends on the prior π(·).

I ”Bayesian confidence region” and ”confidence interval” are
two distinct notions.



Bayesian estimation (1)

I The Bayesian framework can also be used to estimate the true
underlying parameter (hence, in a frequentist approach).

I In this case, the prior distribution does not reflect a prior
belief: It is just an artificial tool used in order to define a new
class of estimators.

I Back to the frequentist approach: The sample X1, . . . ,Xn

is associated with a statistical model (E ,F , (Pθ)θ∈Θ).

I Define a distribution (that can be improper) with pdf π on
the parameter space Θ.

I Compute the posterior pdf π(·|X1, . . . ,Xn) associated with π,
seen as a prior distribution.



Bayesian estimation (2)

I Bayes estimator:

ϑ̂(π) =

∫
Θ
θ dπ(θ|X1, . . . ,Xn) :

This is the posterior mean.

I The Bayesian estimator depends on the choice of the prior
distribution π (hence the superscript π).



Bayesian estimation (3)

I In the previous examples:

I Ex. 1 with prior B(a, a) (a > 0):

p̂(π) =
a +

∑n
i=1 Xi

2a + n
=

a/n + X̄n

2a/n + 1
.

In particular, for a = 1/2 (Jeffreys prior),

p̂(πJ ) =
1/(2n) + X̄n

1/n + 1
.

I Ex. 2: ϑ̂(πJ ) = X̄n.

I In each of these examples, the Bayes estimator is consistent
and asymptotically normal.

I In general, the asymptotic properties of the Bayes estimator
do not depend on the choice of the prior.


