

Statistics for Applications

Chapter 8: Bayesian Statistics

The Bayesian approach (1)

- ▶ So far, we have studied the frequentist approach of statistics.
- ▶ The frequentist approach:
 - ▶ Observe data
 - ▶ These data were generated randomly (by Nature, by measurements, by designing a survey, etc...)
 - ▶ We made assumptions on the generating process (e.g., i.i.d., Gaussian data, smooth density, linear regression function, etc...)
 - ▶ The generating process was associated to some object of interest (e.g., a parameter, a density, etc...)
 - ▶ This object was unknown but fixed and we wanted to find it: we either estimated it or tested a hypothesis about this object, etc...

The Bayesian approach (2)

- ▶ Now, we still observe data, assumed to be randomly generated by some process. Under some assumptions (e.g., parametric distribution), this process is associated with some fixed object.
- ▶ We have a **prior belief** about it.
- ▶ Using the data, we want to update that belief and transform it into a **posterior belief**.

The Bayesian approach (3)

Example

- ▶ Let p be the proportion of woman in the population.
- ▶ Sample n people randomly with replacement in the population and denote by X_1, \dots, X_n their gender (1 for woman, 0 otherwise).
- ▶ In the frequentist approach, we estimated p (using the MLE), we constructed some confidence interval for p , we did hypothesis testing (e.g., $H_0 : "p = .5"$ v.s. $H_1 : "p \neq .5"$).
- ▶ Before analyzing the data, we may believe that p is likely to be close to 1/2.
- ▶ The Bayesian approach is a tool to update our prior belief using the data.

The Bayesian approach (4)

Example (continued)

- ▶ Our prior belief about p can be quantified:
- ▶ E.g., we are 90% sure that p is between .4 and .6, 95% that it is between .3 and .8, etc...
- ▶ Hence, we can model our prior belief using a distribution for p , *as if* p was random.
- ▶ In reality, the true parameter is not random ! However, the Bayesian approach is a way of modeling our belief about the parameter by doing **as if** it was random.
- ▶ E.g., $p \sim \mathcal{B}(a, a)$ (*Beta distribution*) for some $a > 0$.
- ▶ This distribution is called the *prior distribution*.

The Bayesian approach (5)

Example (continued)

- ▶ In our statistical experiment, X_1, \dots, X_n are assumed to be i.i.d. Bernoulli r.v. with parameter p **conditionally on p** .
- ▶ After observing the available sample X_1, \dots, X_n , we can update our belief about p by taking its distribution conditionally on the data.
- ▶ The distribution of p conditionally on the data is called the *posterior distribution*.
- ▶ Here, the posterior distribution is

$$\mathcal{B} \left(a + \sum_{i=1}^n X_i, a + n - \sum_{i=1}^n X_i \right).$$

The Bayes rule and the posterior distribution (1)

- ▶ Consider a probability distribution on a parameter space Θ with some pdf $\pi(\cdot)$: the *prior distribution*.
- ▶ Let X_1, \dots, X_n be a sample of n random variables.
- ▶ Denote by $p_n(\cdot | \vartheta)$ the joint pdf of X_1, \dots, X_n conditionally on ϑ , where $\vartheta \sim \pi$.
- ▶ Usually, one assumes that X_1, \dots, X_n are i.i.d. conditionally on ϑ .
- ▶ The conditional distribution of ϑ given X_1, \dots, X_n is called the *posterior distribution*. Denote by $\pi(\cdot | X_1, \dots, X_n)$ its pdf.

The Bayes rule and the posterior distribution (2)

- ▶ Bayes' formula states that:

$$\pi(\theta|X_1, \dots, X_n) \propto \pi(\theta)p_n(X_1, \dots, X_n|\theta), \quad \forall \theta \in \Theta.$$

- ▶ The constant does not depend on θ :

$$\pi(\theta|X_1, \dots, X_n) = \frac{\pi(\theta)p_n(X_1, \dots, X_n|\theta)}{\int_{\Theta} p_n(X_1, \dots, X_n|t) d\pi(t)}, \quad \forall \theta \in \Theta.$$

The Bayes rule and the posterior distribution (3)

In the previous example:

- ▶ $\pi(p) \propto p^{a-1}(1-p)^{a-1}, p \in (0, 1).$

- ▶ Given $p, X_1, \dots, X_n \stackrel{i.i.d.}{\sim} Ber(p)$, so

$$p_n(X_1, \dots, X_n | \theta) = p^{\sum_{i=1}^n X_i} (1-p)^{n - \sum_{i=1}^n X_i}.$$

- ▶ Hence,

$$\pi(\theta | X_1, \dots, X_n) \propto p^{a-1 + \sum_{i=1}^n X_i} (1-p)^{a-1 + n - \sum_{i=1}^n X_i}.$$

- ▶ The posterior distribution is

$$\mathcal{B} \left(a + \sum_{i=1}^n X_i, a + n - \sum_{i=1}^n X_i \right).$$

Non informative priors (1)

- ▶ Idea: In case of ignorance, or of lack of prior information, one may want to use a prior that is as little informative as possible.
- ▶ Good candidate: $\pi(\theta) \propto 1$, i.e., constant pdf on Θ .
- ▶ If Θ is bounded, this is the uniform prior on Θ .
- ▶ If Θ is unbounded, this does not define a proper pdf on Θ !
- ▶ An *improper prior* on Θ is a measurable, nonnegative function $\pi(\cdot)$ defined on Θ that is not integrable.
- ▶ In general, one can still define a posterior distribution using an improper prior, using Bayes' formula.

Non informative priors (2)

Examples:

- If $p \sim \mathcal{U}(0, 1)$ and given $p, X_1, \dots, X_n \stackrel{i.i.d.}{\sim} Ber(p)$:

$$\pi(p|X_1, \dots, X_n) \propto p^{\sum_{i=1}^n X_i} (1-p)^{n-\sum_{i=1}^n X_i},$$

i.e., the posterior distribution is

$$\mathcal{B}\left(1 + \sum_{i=1}^n X_i, 1 + n - \sum_{i=1}^n X_i\right).$$

- If $\pi(\theta) = 1, \forall \theta \in \mathbb{R}$ and given $\vartheta, X_1, \dots, X_n \stackrel{i.i.d.}{\sim} \mathcal{N}(\vartheta, 1)$:

$$\pi(\theta|X_1, \dots, X_n) \propto \exp\left(-\frac{1}{2} \sum_{i=1}^n (X_i - \theta)^2\right),$$

i.e., the posterior distribution is

$$\mathcal{N}\left(\bar{X}_n, \frac{1}{n}\right).$$

Non informative priors (3)

- ▶ *Jeffreys prior:*

$$\pi_J(\theta) \propto \sqrt{\det I(\theta)},$$

where $I(\theta)$ is the Fisher information matrix of the statistical model associated with X_1, \dots, X_n in the frequentist approach (provided it exists).

- ▶ In the previous examples:

- ▶ Ex. 1: $\pi_J(p) \propto \frac{1}{\sqrt{p(1-p)}}$, $p \in (0, 1)$: the prior is $\mathcal{B}(1/2, 1/2)$.
- ▶ Ex. 2: $\pi_J(\theta) \propto 1$, $\theta \in \mathbb{R}$ is an improper prior.

Non informative priors (4)

- ▶ Jeffreys prior satisfies a reparametrization invariance principle:
If η is a reparametrization of ϑ (i.e., $\eta = \phi(\vartheta)$ for some one-to-one map ϕ), then the pdf $\tilde{\pi}(\cdot)$ of η satisfies:

$$\tilde{\pi}(\eta) \propto \sqrt{\det \tilde{I}(\eta)},$$

where $\tilde{I}(\eta)$ is the Fisher information of the statistical model parametrized by η instead of ϑ .

Bayesian confidence regions

- ▶ For $\alpha \in (0, 1)$, a Bayesian confidence region with level α is a random subset \mathcal{R} of the parameter space Θ , which depends on the sample X_1, \dots, X_n , such that:

$$\mathbb{P}[\vartheta \in \mathcal{R} | X_1, \dots, X_n] = 1 - \alpha.$$

- ▶ Note that \mathcal{R} depends on the prior $\pi(\cdot)$.
- ▶ "Bayesian confidence region" and "confidence interval" are two **distinct** notions.

Bayesian estimation (1)

- ▶ The Bayesian framework can also be used to estimate the true underlying parameter (hence, in a frequentist approach).
- ▶ In this case, the prior distribution does not reflect a prior belief: It is just an artificial tool used in order to define a new class of estimators.
- ▶ **Back to the frequentist approach:** The sample X_1, \dots, X_n is associated with a statistical model $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$.
- ▶ Define a distribution (that can be improper) with pdf π on the parameter space Θ .
- ▶ Compute the posterior pdf $\pi(\cdot | X_1, \dots, X_n)$ associated with π , seen as a prior distribution.

Bayesian estimation (2)

- ▶ *Bayes estimator:*

$$\hat{\vartheta}^{(\pi)} = \int_{\Theta} \theta \, d\pi(\theta | X_1, \dots, X_n) :$$

This is the *posterior mean*.

- ▶ The Bayesian estimator depends on the choice of the prior distribution π (hence the superscript π).

Bayesian estimation (3)

- ▶ In the previous examples:
 - ▶ Ex. 1 with prior $\mathcal{B}(a, a)$ ($a > 0$):

$$\hat{p}^{(\pi)} = \frac{a + \sum_{i=1}^n X_i}{2a + n} = \frac{a/n + \bar{X}_n}{2a/n + 1}.$$

In particular, for $a = 1/2$ (Jeffreys prior),

$$\hat{p}^{(\pi_J)} = \frac{1/(2n) + \bar{X}_n}{1/n + 1}.$$

- ▶ Ex. 2: $\hat{\vartheta}^{(\pi_J)} = \bar{X}_n$.
- ▶ In each of these examples, the Bayes estimator is consistent and asymptotically normal.
- ▶ In general, the asymptotic properties of the Bayes estimator do not depend on the choice of the prior.