Statistics for Applications

Chapter 8: Bayesian Statistics



The Bayesian approach (1)

» So far, we have studied the frequentist approach of statistics.

» The frequentist approach:

>

>

Observe data

These data were generated randomly (by Nature, by
measurements, by designing a survey, etc...)

We made assumptions on the generating process (e.g., i.i.d.,
Gaussian data, smooth density, linear regression function,
etc...)

The generating process was associated to some object of
interest (e.g., a parameter, a density, etc...)

This object was unknown but fixed and we wanted to find it:
we either estimated it or tested a hypothesis about this object,
etc...



The Bayesian approach (2)

» Now, we still observe data, assumed to be randomly generated
by some process. Under some assumptions (e.g., parametric
distribution), this process is associated with some fixed object.

» We have a prior belief about it.

» Using the data, we want to update that belief and transform
it into a posterior belief.



The Bayesian approach (3)

Example

>

Let p be the proportion of woman in the population.

Sample n people randomly with replacement in the population
and denote by X, ..., X, their gender (1 for woman, 0
otherwise).

In the frequentist approach, we estimated p (using the MLE),
we constructed some confidence interval for p, we did
hypothesis testing (e.g., Ho: "p=.5" v.is. Hy :"p # .5").

Before analyzing the data, we may believe that p is likely to
be close to 1/2.

The Bayesian approach is a tool to update our prior belief
using the data.



The Bayesian approach (4)

Example (continued)

» Qur prior belief about p can be quantified:

» E.g., we are 90% sure that p is between .4 and .6, 95% that it
is between .3 and .8, etc...

» Hence, we can model our prior belief using a distribution for
p, as if p was random.

> In reality, the true parameter is not random ! However, the
Bayesian approach is a way of modeling our belief about the
parameter by doing as if it was random.

» E.g., p~ B(a, a) (Beta distribution) for some a > 0.

» This distribution is called the prior distribution.



The Bayesian approach (5)

Example (continued)

» In our statistical experiment, Xi,..., X, are assumed to be
i.i.d. Bernoulli r.v. with parameter p conditionally on p.

> After observing the available sample Xi, ..., X,, we can
update our belief about p by taking its distribution

conditionally on the data.

» The distribution of p conditionally on the data is called the
posterior distribution.

» Here, the posterior distribution is

B(a—}—iX;,a—i—n—iX;).
i=1 i=1



The Bayes rule and the posterior distribution (1)
» Consider a probability distribution on a parameter space ©
with some pdf 7(-): the prior distribution.
» Let Xi,...,X, be a sample of n random variables.

» Denote by p,(:|?) the joint pdf of Xi,..., X, conditionally on
¥, where ¥ ~ .

» Usually, one assumes that Xi,..., X, are i.i.d. conditionally
on 1.

» The conditional distribution of ¥ given Xi,..., X, is called
the posterior distribution. Denote by (- X1, ..., X,) its pdf.



The Bayes rule and the posterior distribution (2)

» Bayes' formula states that:

T(01X0, . .., Xn) o 7(0)pa(Xa, ..., Xnl0), VO € O.

» The constant does not depend on 6:

_ w(0)pa(Xa, - Xlf)
Jo (X1, ..., Xq|t)dm(t)’

m(O1X1, ..., Xn) Vo € ©.



The Bayes rule and the posterior distribution (3)
In the previous example:
» m(p) < pP 11— p)° 7, p e (0,1).
» Given p, Xi,...,X, ES Ber(p), so
Pa(X1, - Xal0) = pZra Xi(1 — p) i X
> Hence,
(0] X1, .., Xp) oc pP IR Xi(1 - pya =i X,

» The posterior distribution is

B<a+zn:X,-,a+n—zn:X,->.
i=1 i=1



Non informative priors (1)

» Idea: In case of ignorance, or of lack of prior information, one
may want to use a prior that is as little informative as
possible.

» Good candidate: 7(f) x 1, i.e., constant pdf on ©.

» If © is bounded, this is the uniform prior on ©.

» If © is unbounded, this does not define a proper pdf on © !

» An improper prior on © is a measurable, nonnegative function
7(-) defined on © that is not integrable.

> In general, one can still define a posterior distribution using an
improper prior, using Bayes' formula.



Non informative priors (2)
Examples:

» If p~U(0,1) and given p, Xi,..., X, i Ber(p) :

m(p|X1,. .., Xn) pi-t Xi(1 - p)”—27:1 Xi

i.e., the posterior distribution is

B <1+ZX,-,1+n—ZX,-> :
i=1 i=1
> If 7(0) = 1,0 € R and given 9, X1,..., X, "~ N (9,1):
n

7[-(9’)(17 s 7Xn) o exp (_; Z(XI - 0)2 )

i=1
i.e., the posterior distribution is

N (x 1) .
n



Non informative priors (3)

> Jeffreys prior:
7m(0) o< \/det 1(0),

where /(0) is the Fisher information matrix of the statistical
model associated with Xi,..., X, in the frequentist approach
(provided it exists).

> In the previous examples:

» Ex. 1: my(p) o m p € (0,1): the prior is B(1/2,1/2).

» Ex. 2: m;(0) < 1, 6 € R is an improper prior.



Non informative priors (4)

> Jeffreys prior satisfies a reparametrization invariance principle:
If  is a reparametrization of ¥ (i.e., n = ¢(¥) for some
one-to-one map ¢), then the pdf 7(-) of n satisfies:

#(n) o \/det I(n),

where 1(7) is the Fisher information of the statistical model
parametrized by 7 instead of .



Bayesian confidence regions

» For a € (0,1), a Bayesian confidence region with level « is a
random subset R of the parameter space ©, which depends
on the sample Xi, ..., X,, such that:

PY e RIX1,...,Xn] =1—a.
» Note that R depends on the prior 7(-).

» "Bayesian confidence region” and " confidence interval” are
two distinct notions.



Bayesian estimation (1)

» The Bayesian framework can also be used to estimate the true
underlying parameter (hence, in a frequentist approach).

» In this case, the prior distribution does not reflect a prior
belief: It is just an artificial tool used in order to define a new
class of estimators.

» Back to the frequentist approach: The sample Xi,..., X,
is associated with a statistical model (E, F, (Pg)oco)-

» Define a distribution (that can be improper) with pdf 7 on
the parameter space ©.

» Compute the posterior pdf =(-|X1,..., X,) associated with T,
seen as a prior distribution.



Bayesian estimation (2)

» Bayes estimator:
H) :/ 0dm(0|X1, ..., X,)
e
This is the posterior mean.

» The Bayesian estimator depends on the choice of the prior
distribution 7 (hence the superscript 7).



Bayesian estimation (3)
> In the previous examples:
» Ex. 1 with prior B(a,a) (a > 0):

Mm@t i Xi _a/n+ X,
P T T ~ 2a/n+1°

In particular, for a = 1/2 (Jeffreys prior),

1/(2n) + X,
1/n+1

p(ms) —
» Ex. 2: 9(™) = X,,.
> In each of these examples, the Bayes estimator is consistent
and asymptotically normal.

> In general, the asymptotic properties of the Bayes estimator
do not depend on the choice of the prior.



