

## Statistics for Applications

### Chapter 7: Further questions in regression

## Linear regression and lack of identifiability (1)

Consider the following model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

with:

1.  $\mathbf{Y} \in \mathbb{R}^n$  (dependent variables),  $\mathbf{X} \in \mathbb{R}^{n \times p}$  (deterministic design) ;
2.  $\boldsymbol{\beta} \in \mathbb{R}^p$ , unknown;
3.  $\boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \sigma^2 I_n)$ .

- ▶ Previously, we assumed that  $X$  had rank  $p$ , so we could invert  $X'X$ .
- ▶ What if  $X$  is not of rank  $p$  ? E.g., if  $p > n$  ?
- ▶  $\boldsymbol{\beta}$  would no longer be identified: estimation of  $\boldsymbol{\beta}$  is vain (unless we add more structure).

## Linear regression and lack of identifiability (2)

- ▶ What about prediction ?  $\mathbf{X}\beta$  is still identified.
- ▶  $\hat{\mathbf{Y}}$ : orthogonal projection of  $\mathbf{Y}$  onto the linear span of the columns of  $\mathbf{X}$ .
- ▶  $\hat{\mathbf{Y}} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}'\mathbf{X})^\dagger \mathbf{X}\mathbf{Y}$ , where  $A^\dagger$  stands for the (Moore-Penrose) pseudo inverse of a matrix  $A$ .
- ▶ Similarly as before, if  $k = \text{rank}(\mathbf{X})$ :

- ▶ 
$$\frac{\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2}{\sigma^2} \sim \chi_{n-k}^2,$$

- ▶  $\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2 \perp\!\!\!\perp \hat{\mathbf{Y}}.$

## Linear regression and lack of identifiability (3)

- ▶ In particular:

$$\mathbb{E}[\|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2] = (n - k)\sigma^2.$$

- ▶ Unbiased estimator of the variance:

$$\hat{\sigma}^2 = \frac{1}{n - k} \|\hat{\mathbf{Y}} - \mathbf{Y}\|_2^2.$$

## Linear regression in high dimension (1)

Consider again the following model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

with:

1.  $\mathbf{Y} \in \mathbb{R}^n$  (dependent variables),  $\mathbf{X} \in \mathbb{R}^{n \times p}$  (deterministic design) ;
2.  $\boldsymbol{\beta} \in \mathbb{R}^p$ , unknown: to be estimated;
3.  $\boldsymbol{\varepsilon} \sim \mathcal{N}_n(0, \sigma^2 I_n)$ .

- ▶ For each  $i$ ,  $X_i \in \mathbb{R}^p$  is the vector of covariates of the  $i$ -th individual.
- ▶ If  $p$  is too large ( $p > n$ ), there are too many parameters to be estimated (overfitting model), although some covariates may be irrelevant.
- ▶ Solution: Reduction of the dimension.

## Linear regression in high dimension (2)

- ▶ **Idea:** Assume that only a few coordinates of  $\beta$  are nonzero (but we do not know which ones).
- ▶ Based on the sample, select a subset of covariates and estimate the corresponding coordinates of  $\beta$ .
- ▶ For  $S \subseteq \{1, \dots, p\}$ , let

$$\hat{\beta}_S \in \underset{\mathbf{t} \in \mathbb{R}^S}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}_S \mathbf{t}\|^2,$$

where  $\mathbf{X}_S$  is the submatrix of  $\mathbf{X}$  obtained by keeping only the covariates indexed in  $S$ .

## Linear regression in high dimension (3)

- ▶ Select a subset  $S$  that minimizes the prediction error penalized by the complexity (or size) of the model:

$$\|\mathbf{Y} - \mathbf{X}_S \hat{\boldsymbol{\beta}}_S\|^2 + \lambda|S|,$$

where  $\lambda > 0$  is a tuning parameter.

- ▶ If  $\lambda = 2\hat{\sigma}^2$ , this is the *Mallow's Cp* or *AIC* criterion.
- ▶ If  $\lambda = \hat{\sigma}^2 \ln n$ , this is the *BIC* criterion.

## Linear regression in high dimension (4)

- ▶ Each of these criteria is equivalent to finding  $\beta \in \mathbb{R}^p$  that minimizes:

$$\|\mathbf{Y} - \mathbf{X}\mathbf{b}\|_2^2 + \lambda \|\mathbf{b}\|_0,$$

where  $\|\mathbf{b}\|_0$  is the number of nonzero coefficients of  $\mathbf{b}$ .

- ▶ This is a computationally hard problem: nonconvex and requires to compute  $2^n$  estimators (all the  $\hat{\beta}_S$ , for  $S \subseteq \{1, \dots, p\}$ ).
- ▶ *Lasso estimator*: replace  $\|\mathbf{b}\|_0$  with  $\|\mathbf{b}\|_1$  and the problem becomes convex.

$$\hat{\beta}^L \in \operatorname*{argmin}_{\mathbf{b} \in \mathbb{R}^p} \|\mathbf{Y} - \mathbf{X}\mathbf{b}\|^2 + \lambda \|\mathbf{b}\|_1,$$

where  $\lambda > 0$  is a tuning parameter.

## Linear regression in high dimension (5)

- ▶ How to choose  $\lambda$  ?
- ▶ This is a difficult question (see grad courses in statistics).
- ▶ A *good choice* of  $\lambda$  will lead to an estimator  $\hat{\beta}$  that is very close to  $\beta$  and will allow to recover the subset  $S^*$  of all  $j \in \{1, \dots, p\}$  for which  $\beta_j \neq 0$ , with high probability.

## Nonparametric regression (1)

- ▶ In the linear setup, we assumed that  $Y_i = \mathbf{X}'_i \boldsymbol{\beta} + \varepsilon_i$ , where  $\mathbf{X}_i$  are deterministic.
- ▶ This has to be understood as working conditionally on the design.
- ▶ This is to assume that  $\mathbb{E}[Y_i | \mathbf{X}_i]$  is a linear function of  $\mathbf{X}_i$ , which is not true in general.
- ▶ Let  $f(x) = \mathbb{E}[Y_i | \mathbf{X}_i = x]$ ,  $x \in \mathbb{R}^p$ : How to estimate the function  $f$  ?

## Nonparametric regression (2)

**Let  $p = 1$  in the sequel.**

- ▶ One can make a parametric assumption on  $f$ .
- ▶ E.g.,  $f(x) = a + bx$ ,  $f(x) = a + bx + cx^2$ ,  $f(x) = e^{a+bx}$ , ...
- ▶ The problem reduces to the estimation of a finite number of parameters.
- ▶ LSE, MLE, all the previous theory for the linear case could be adapted.
- ▶ What if we do not make any such parametric assumption on  $f$ ?

## Nonparametric regression (3)

- ▶ Assume  $f$  is smooth enough:  $f$  can be well approximated by a piecewise constant function.
- ▶ Idea: Local averages.
- ▶ For  $x \in \mathbb{R}$ :  $f(t) \approx f(x)$  for  $t$  close to  $x$ .
- ▶ For all  $i$  such that  $X_i$  is close enough to  $x$ ,

$$Y_i \approx f(x) + \varepsilon_i.$$

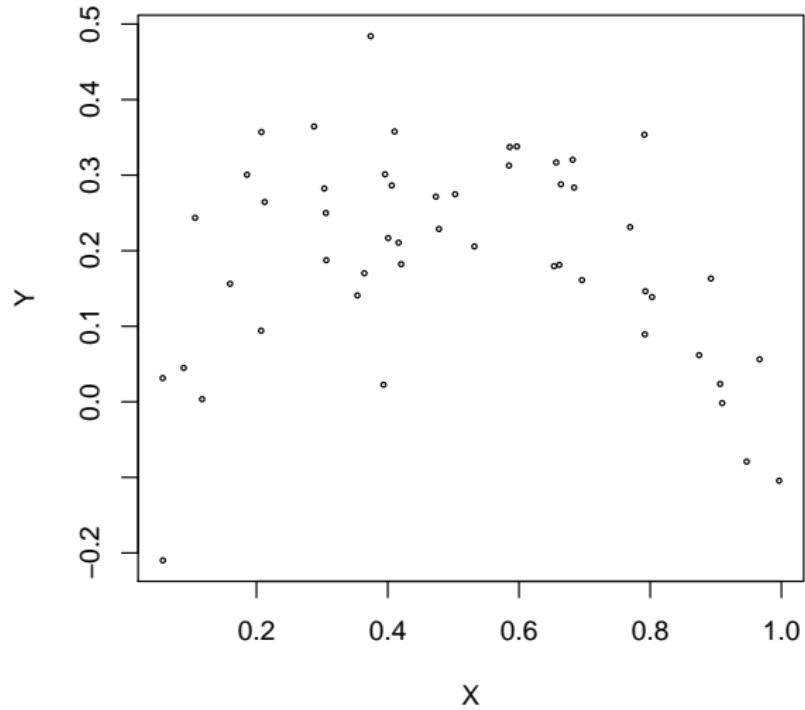
- ▶ Estimate  $f(x)$  by the average of all  $Y_i$ 's for which  $X_i$  is close enough to  $x$ .

## Nonparametric regression (4)

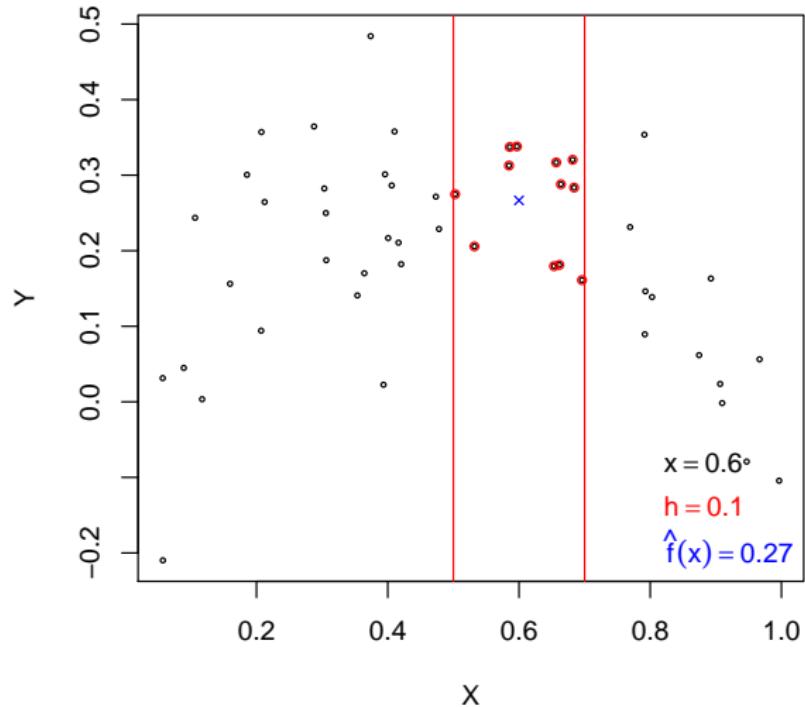
- ▶ Let  $h > 0$ : the window's size (or bandwidth).
- ▶ Let  $I_x = \{i = 1, \dots, n : |X_i - x| < h\}$ .
- ▶ Let  $\hat{f}_{n,h}(x)$  be the average of  $\{Y_i : i \in I_x\}$ .

$$\hat{f}_{n,h}(x) = \begin{cases} \frac{1}{|I_x|} \sum_{i \in I_x} Y_i & \text{if } I_x \neq \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

## Nonparametric regression (5)



## Nonparametric regression (6)



## Nonparametric regression (7)

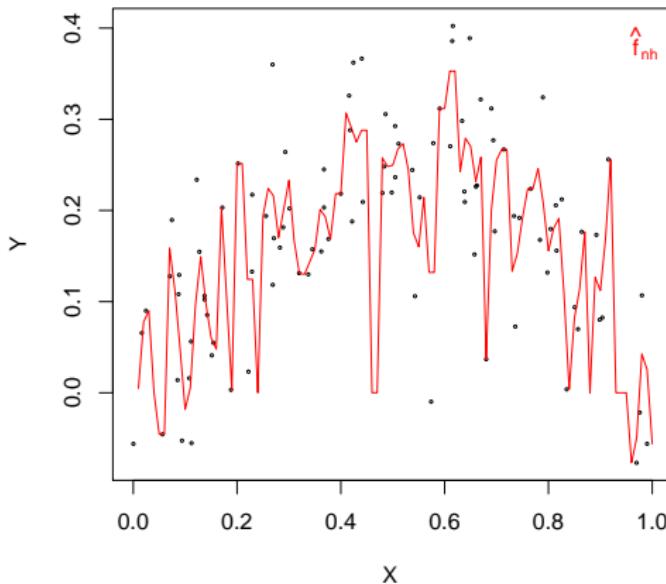
### How to choose $h$ ?

- ▶ If  $h \rightarrow 0$ : overfitting the data;
- ▶ If  $h \rightarrow \infty$ : underfitting,  $\hat{f}_{n,h}(x) = \bar{Y}_n$ .

## Nonparametric regression (8)

### Example:

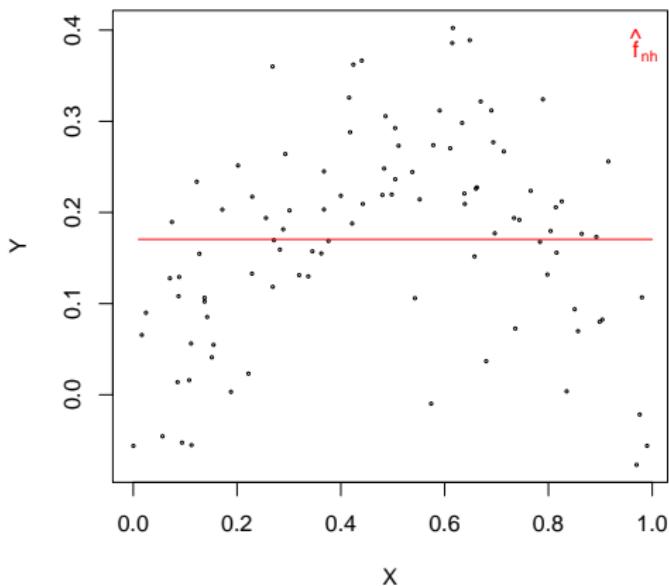
- ▶  $n = 100$ ,  $f(x) = x(1 - x)$ ,
- ▶  $h = .005$ .



## Nonparametric regression (9)

### Example:

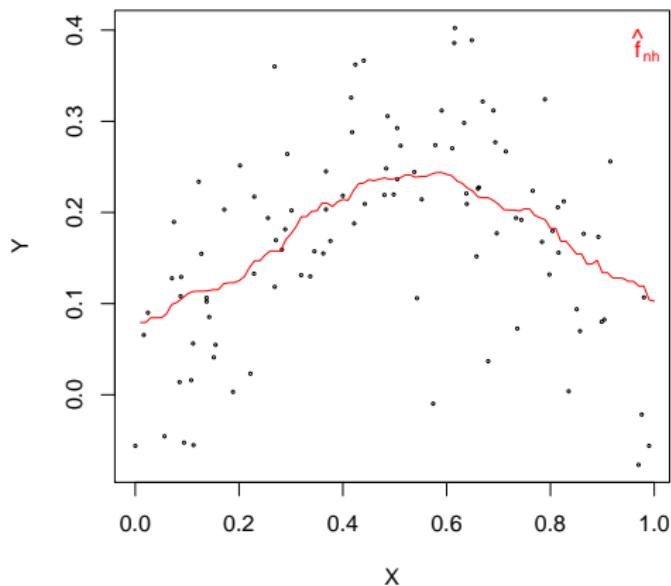
- ▶  $n = 100$ ,  $f(x) = x(1 - x)$ ,
- ▶  $h = 1$ .



# Nonparametric regression (10)

## Example:

- ▶  $n = 100$ ,  $f(x) = x(1 - x)$ ,
- ▶  $h = .2$ .



## Nonparametric regression (11)

### Choice of $h$ ?

- ▶ If the smoothness of  $f$  is known (i.e., quality of local approximation of  $f$  by piecewise constant functions): There is a *good* choice of  $h$  depending on that smoothness
- ▶ If the smoothness of  $f$  is unknown: Other techniques, e.g. *cross validation*.