Statistics for Applications

Chapter 7: Further questions in regression



Linear regression and lack of identifiability (1)

Consider the following model:
Y =X3 + ¢,

with:
1. Y € R" (dependent variables), X € R"*P (deterministic
design) ;
2. B € RP, unknown;
3. € ~ Na(0,021,).

» Previously, we assumed that X had rank p, so we could invert
X'X.

» What if X isnotof rank p? Eg.,if p>n?

» 3 would no longer be identified: estimation of 3 is vain
(unless we add more structure).



Linear regression and lack of identifiability (2)

v

What about prediction 7 X3 is still identified.

Y: orthogonal projection of Y onto the linear span of the
columns of X.

v

v

Y = X3 = X(X'X)XY, where A’ stands for the
(Moore-Penrose) pseudo inverse of a matrix A.

v

Similarly as before, if k = rank(X):
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Linear regression and lack of identifiability (3)

> In particular:
E[I¥ — Y[3] = (n— k)o>.

» Unbiased estimator of the variance:

1 ~
A2 2
o _7Y_Y .



Linear regression in high dimension (1)
Consider again the following model:

Y = X8 +e,

with:
1. Y € R" (dependent variables), X € R"*P (deterministic
design) ;
2. B € RP, unknown: to be estimated,;
3. € ~ N,(0,521,).

» For each i, X; € RP is the vector of covariates of the j-th
individual.

» If pis too large (p > n), there are too many parameters to be
estimated (overfitting model), although some covariates may

be irrelevant.

» Solution: Reduction of the dimension.



Linear

regression in high dimension (2)

Idea: Assume that only a few coordinates of 3 are nonzero
(but we do not know which ones).

Based on the sample, select a subset of covariates and
estimate the corresponding coordinates of 3.

For S C{1,...,p}, let

,@5 € argmin ||Y — X5t|\2,
teRS

where Xg is the submatrix of X obtained by keeping only the
covariates indexed in S.



Linear regression in high dimension (3)

> Select a subset S that minimizes the prediction error
penalized by the complexity (or size) of the model:

IY — XsBs]I* + A[S],
where A > 0 is a tuning parameter.

» If A\ =262, this is the Mallow’s Cp or AIC criterion.

» If A\ = &2Inn, this is the BIC criterion.



Linear regression in high dimension (4)

» Each of these criteria is equivalent to finding 3 € RP that
minimizes:

1Y = Xb|Z + Allblo,

where ||b]|o is the number of nonzero coefficients of b.

» This is a computationally hard problem: nonconvex and
requires to compute 2" estimators (all the 3, for

SC{L....p}).

» Lasso estimator: replace ||b[lo with |[b[[1 and the problem
becomes convex.

AL .
B € argmin ||Y — Xb|?> + A||b|1,
beRP

where A > 0 is a tuning parameter.



Linear regression in high dimension (5)

» How to choose A ?
» This is a difficult question (see grad courses in statistics).
» A good choice of A will lead to an estimator ,@ that is very

close to B and will allow to recover the subset S* of all
J€{1,...,p} for which 3; # 0, with high probability.



Nonparametric regression (1)

> In the linear setup, we assumed that Y; = X3 + ¢;, where X;
are deterministic.

» This has to be understood as working conditionally on the
design.

» This is to assume that E[Y;|X] is a linear function of X;,
which is not true in general.

> Let f(x) = E[Y;|X; = x], x € RP: How to estimate the
function f 7



Nonparametric regression (2)

Let p =1 in the sequel.

» One can make a parametric assumption on f.

v

E.g., f(x) =a+ bx, f(x) =a+ bx+ cx?, f(x)=eatbx .

v

The problem reduces to the estimation of a finite number of
parameters.

v

LSE, MLE, all the previous theory for the linear case could be
adapted.

v

What if we do not make any such parametric assumption on f
?



Nonparametric regression (3)

» Assume f is smooth enough: f can be well approximated by a
piecewise constant function.

> ldea: Local averages.
» For x € R: f(t) = f(x) for t close to x.

» For all i such that X; is close enough to x,
Y; ~ f(X) + €.

» Estimate f(x) by the average of all Y;'s for which X; is close
enough to x.



Nonparametric regression (4)

v

Let h > 0: the window's size (or bandwidth).

v

Let Lk ={i=1,....,n:|X; — x| < h}.

Let f, n(x) be the average of {Y;:i € L}

v

“1,2%- i Iy # 0

| 4 fn,h(X) — i€ly

0 otherwise.



Nonparametric regression (5)
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Nonparametric regression (6)
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Nonparametric regression (7)

How to choose h ?

» If h — 0: overfitting the data;

> If h — co: underfitting, f, 4(x) = Y.



Nonparametric regression (8)

Example:
» n =100, f(x) = x(1 — x),
» h = .005.
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Nonparametric regression (9)

Example:
» n =100, f(x) = x(1 — x),
» h=1.
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Nonparametric regression (10)

Example:
» n =100, f(x) = x(1 — x),
> h=.2.
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Nonparametric regression (11)

Choice of h ?

» If the smoothness of f is known (i.e., quality of local
approximation of f by piecewise constant functions): There is
a good choice of h depending on that smoothness

> If the smoothness of f is unknown: Other techniques, e.g.
cross validation.



