
Statistics for Applications

Chapter 7: Further questions in regression



Linear regression and lack of identifiability (1)
Consider the following model:

Y = Xβ + ε,

with:

1. Y ∈ Rn (dependent variables), X ∈ Rn×p (deterministic
design) ;

2. β ∈ Rp, unknown;

3. ε ∼ Nn(0, σ2In).

I Previously, we assumed that X had rank p, so we could invert
X ′X .

I What if X is not of rank p ? E.g., if p > n ?

I β would no longer be identified: estimation of β is vain
(unless we add more structure).



Linear regression and lack of identifiability (2)

I What about prediction ? Xβ is still identified.

I Ŷ: orthogonal projection of Y onto the linear span of the
columns of X.

I Ŷ = Xβ̂ = X(X′X)†XY, where A† stands for the
(Moore-Penrose) pseudo inverse of a matrix A.

I Similarly as before, if k = rank(X):

I
‖Ŷ − Y‖22

σ2
∼ χ2

n−k ,

I ‖Ŷ − Y‖22 ⊥⊥ Ŷ.



Linear regression and lack of identifiability (3)

I In particular:
E[‖Ŷ − Y‖22] = (n − k)σ2.

I Unbiased estimator of the variance:

σ̂2 =
1

n − k
‖Ŷ − Y‖22.



Linear regression in high dimension (1)
Consider again the following model:

Y = Xβ + ε,

with:

1. Y ∈ Rn (dependent variables), X ∈ Rn×p (deterministic
design) ;

2. β ∈ Rp, unknown: to be estimated;

3. ε ∼ Nn(0, σ2In).

I For each i , Xi ∈ Rp is the vector of covariates of the i-th
individual.

I If p is too large (p > n), there are too many parameters to be
estimated (overfitting model), although some covariates may
be irrelevant.

I Solution: Reduction of the dimension.



Linear regression in high dimension (2)

I Idea: Assume that only a few coordinates of β are nonzero
(but we do not know which ones).

I Based on the sample, select a subset of covariates and
estimate the corresponding coordinates of β.

I For S ⊆ {1, . . . , p}, let

β̂S ∈ argmin
t∈RS

‖Y − XSt‖2,

where XS is the submatrix of X obtained by keeping only the
covariates indexed in S .



Linear regression in high dimension (3)

I Select a subset S that minimizes the prediction error
penalized by the complexity (or size) of the model:

‖Y − XS β̂S‖2 + λ|S |,

where λ > 0 is a tuning parameter.

I If λ = 2σ̂2, this is the Mallow’s Cp or AIC criterion.

I If λ = σ̂2 ln n, this is the BIC criterion.



Linear regression in high dimension (4)

I Each of these criteria is equivalent to finding β ∈ Rp that
minimizes:

‖Y − Xb‖22 + λ‖b‖0,

where ‖b‖0 is the number of nonzero coefficients of b.

I This is a computationally hard problem: nonconvex and
requires to compute 2n estimators (all the β̂S , for
S ⊆ {1, . . . , p}).

I Lasso estimator: replace ‖b‖0 with ‖b‖1 and the problem
becomes convex.

β̂
L ∈ argmin

b∈Rp
‖Y − Xb‖2 + λ‖b‖1,

where λ > 0 is a tuning parameter.



Linear regression in high dimension (5)

I How to choose λ ?

I This is a difficult question (see grad courses in statistics).

I A good choice of λ will lead to an estimator β̂ that is very
close to β and will allow to recover the subset S∗ of all
j ∈ {1, . . . , p} for which βj 6= 0, with high probability.



Nonparametric regression (1)

I In the linear setup, we assumed that Yi = X′iβ + εi , where Xi

are deterministic.

I This has to be understood as working conditionally on the
design.

I This is to assume that E[Yi |Xi ] is a linear function of Xi ,
which is not true in general.

I Let f (x) = E[Yi |Xi = x ], x ∈ Rp: How to estimate the
function f ?



Nonparametric regression (2)

Let p = 1 in the sequel.

I One can make a parametric assumption on f .

I E.g., f (x) = a + bx , f (x) = a + bx + cx2, f (x) = ea+bx , ...

I The problem reduces to the estimation of a finite number of
parameters.

I LSE, MLE, all the previous theory for the linear case could be
adapted.

I What if we do not make any such parametric assumption on f
?



Nonparametric regression (3)

I Assume f is smooth enough: f can be well approximated by a
piecewise constant function.

I Idea: Local averages.

I For x ∈ R: f (t) ≈ f (x) for t close to x .

I For all i such that Xi is close enough to x ,

Yi ≈ f (x) + εi .

I Estimate f (x) by the average of all Yi ’s for which Xi is close
enough to x .



Nonparametric regression (4)

I Let h > 0: the window’s size (or bandwidth).

I Let Ix = {i = 1, . . . , n : |Xi − x | < h}.

I Let f̂n,h(x) be the average of {Yi : i ∈ Ix}.

I f̂n,h(x) =


1

|Ix |
∑
i∈Ix

Yi if Ix 6= ∅

0 otherwise.



Nonparametric regression (5)
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Nonparametric regression (6)
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Nonparametric regression (7)

How to choose h ?

I If h→ 0: overfitting the data;

I If h→∞: underfitting, f̂n,h(x) = Ȳn.



Nonparametric regression (8)

Example:

I n = 100, f (x) = x(1− x),
I h = .005.
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Nonparametric regression (9)

Example:

I n = 100, f (x) = x(1− x),
I h = 1.
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Nonparametric regression (10)

Example:

I n = 100, f (x) = x(1− x),
I h = .2.
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Nonparametric regression (11)

Choice of h ?

I If the smoothness of f is known (i.e., quality of local
approximation of f by piecewise constant functions): There is
a good choice of h depending on that smoothness

I If the smoothness of f is unknown: Other techniques, e.g.
cross validation.


