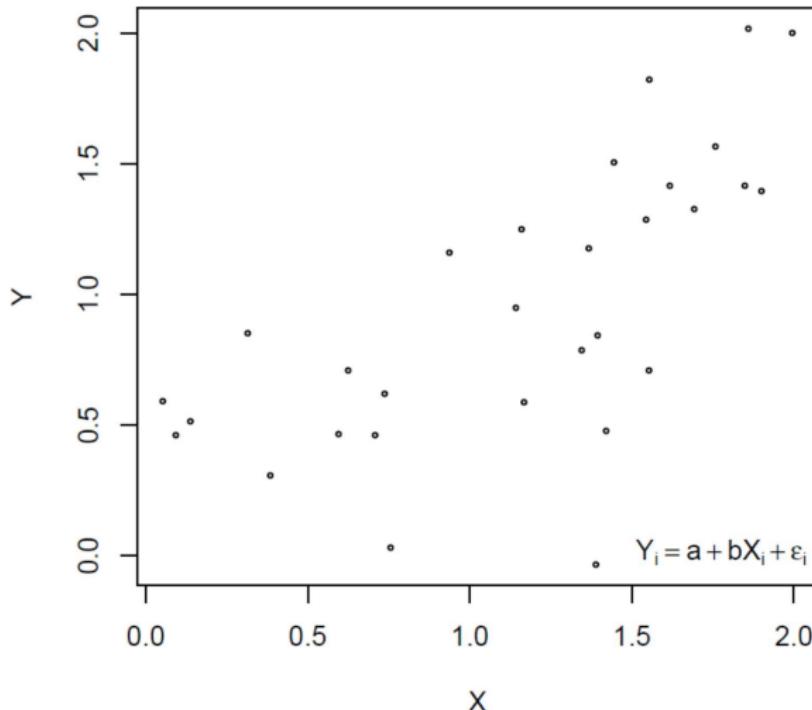


Statistics for Applications

Chapter 6: Linear regression

Heuristics of the linear regression (1)

Consider a cloud of i.i.d. random points $(X_i, Y_i), i = 1, \dots, n$:



Heuristics of the linear regression (2)

- ▶ **Idea:** Fit the *best* line fitting the data.
- ▶ Approximation: $Y_i \approx a + bX_i, i = 1, \dots, n$, for some (unknown) $a, b \in \mathbb{R}$.
- ▶ Find \hat{a}, \hat{b} that approach a and b .
- ▶ More generally: $Y_i \in \mathbb{R}, X_i \in \mathbb{R}^d$,
$$Y_i \approx a + X'_i b, \quad a \in \mathbb{R}, b \in \mathbb{R}^d.$$
- ▶ **Goal:** Write a rigorous model and estimate a and b .

Heuristics of the linear regression (3)

Examples:

- ▶ **Economics:** Demand and price,

$$D_i \approx a + bp_i, \quad i = 1, \dots, n.$$

- ▶ **Ideal gas law:** $PV = nRT$,

$$\ln P_i \approx a + b \ln V_i + c \ln T_i, \quad i = 1, \dots, n.$$

Linear regression of a r.v. Y on a r.v. X (1)

- ▶ Let X and Y be two real r.v. (non necessarily independent) with two moments and such that $\text{Var}(X) \neq 0$.
- ▶ The *theoretical linear regression* of Y on X is the *best approximation in quadratic means* of Y by a linear function of X , i.e. the r.v. $a + bX$, where a and b are the two real numbers minimizing $\mathbb{E}[(Y - a - bX)^2]$.
- ▶ By some simple algebra:
 - ▶ $b = \frac{\text{cov}(X, Y)}{\text{Var}(X)}$,
 - ▶ $a = \mathbb{E}[Y] - b\mathbb{E}[X] = \mathbb{E}[Y] - \frac{\text{cov}(X, Y)}{\text{Var}(X)}\mathbb{E}[X]$.

Linear regression of a r.v. Y on a r.v. X (2)

- If $\varepsilon = Y - (a + bX)$, then

$$Y = a + bX + \varepsilon,$$

with $\mathbb{E}[\varepsilon] = 0$ and $\text{cov}(X, \varepsilon) = 0$.

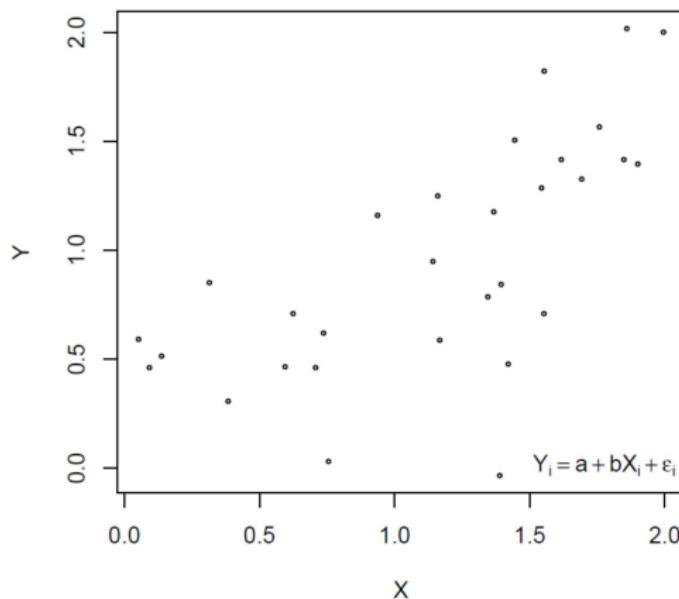
- Conversely: Assume that $Y = a + bX + \varepsilon$ for some $a, b \in \mathbb{R}$ and some centered r.v. ε that satisfies $\text{cov}(X, \varepsilon) = 0$.
- E.g., if $X \perp\!\!\!\perp \varepsilon$ or if $\mathbb{E}[\varepsilon|X] = 0$, then $\text{cov}(X, \varepsilon) = 0$.
- Then, $a + bX$ is the theoretical linear regression of Y on X .

Linear regression of a r.v. Y on a r.v. X (3)

- ▶ A sample of n i.i.d. random pairs (X_1, \dots, X_n) with same distribution as (X, Y) is available.
- ▶ We want to estimate a and b .

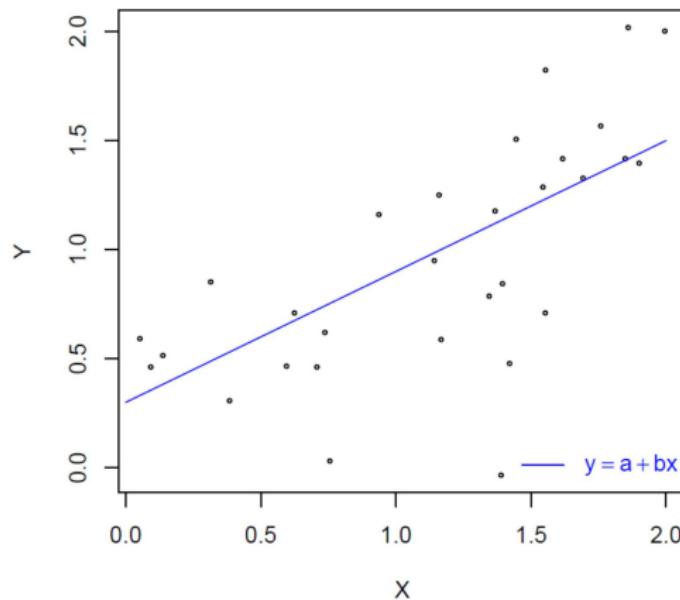
Linear regression of a r.v. Y on a r.v. X (3)

- ▶ A sample of n i.i.d. random pairs (X_1, \dots, X_n) with same distribution as (X, Y) is available.
- ▶ We want to estimate a and b .



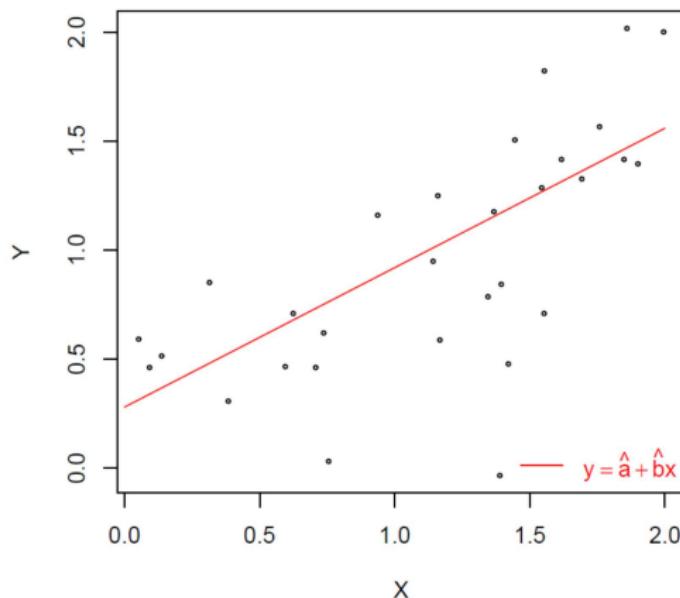
Linear regression of a r.v. Y on a r.v. X (3)

- ▶ A sample of n i.i.d. random pairs (X_1, \dots, X_n) with same distribution as (X, Y) is available.
- ▶ We want to estimate a and b .



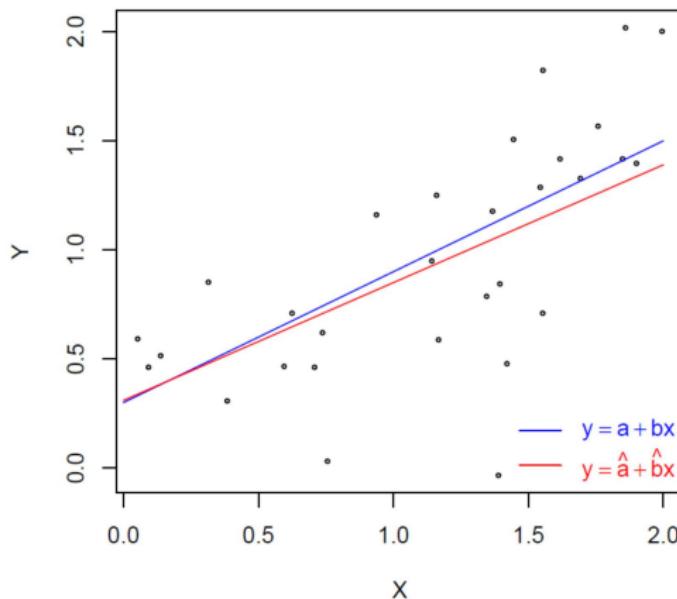
Linear regression of a r.v. Y on a r.v. X (3)

- ▶ A sample of n i.i.d. random pairs (X_1, \dots, X_n) with same distribution as (X, Y) is available.
- ▶ We want to estimate a and b .



Linear regression of a r.v. Y on a r.v. X (3)

- ▶ A sample of n i.i.d. random pairs $(X_1, Y_1), \dots, (X_n, Y_n)$ with same distribution as (X, Y) is available.
- ▶ We want to estimate a and b .



Linear regression of a r.v. Y on a r.v. X (4)

Definition

The *least squared error (LSE)* estimator of (a, b) is the minimiser of the sum of squared errors:

$$\sum_{i=1}^n (Y_i - a - bX_i)^2.$$

(\hat{a}, \hat{b}) is an M-estimator, and:

$$\hat{b} = \frac{\bar{XY} - \bar{X}\bar{Y}}{\bar{X^2} - \bar{X}^2},$$

$$\hat{a} = \bar{Y} - \hat{b}\bar{X}.$$

Linear regression of a r.v. Y on a r.v. X (5)



Multivariate case (1)

$$Y_i = \mathbf{X}'_i \boldsymbol{\beta} + \varepsilon_i, \quad i = 1, \dots, n.$$

- ▶ Vector of *explanatory variables* or *covariates*: $\mathbf{X}_i \in \mathbb{R}^p$ (wlog, assume its first coordinate is 1).
- ▶ *Dependent variable*: Y_i .
- ▶ $\boldsymbol{\beta} = (a, \mathbf{b}')'$; $\beta_1 (= a)$ is called the *intercept*.
- ▶ $\{\varepsilon_i\}_{i=1, \dots, n}$: noise terms satisfying $\text{cov}(\mathbf{X}_i, \varepsilon_i) = \mathbf{0}$.

Definition

The *least squared error (LSE)* estimator of $\boldsymbol{\beta}$ is the minimiser of the sum of square errors:

$$\hat{\boldsymbol{\beta}} = \underset{\mathbf{t} \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{i=1}^n (Y_i - \mathbf{X}'_i \mathbf{t})^2$$

Multivariate case (2)

LSE in matrix form

- ▶ Let $\mathbf{Y} = (Y_1, \dots, Y_n)' \in \mathbb{R}^n$.
- ▶ Let \mathbf{X} be the $n \times p$ matrix whose rows are $\mathbf{X}'_1, \dots, \mathbf{X}'_n$ (\mathbf{X} is called the *design*).
- ▶ Let $\boldsymbol{\varepsilon} = (\varepsilon_1, \dots, \varepsilon_n)' \in \mathbb{R}^n$ (unobserved noise)
- ▶ $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$.
- ▶ The LSE $\hat{\boldsymbol{\beta}}$ satisfies:

$$\hat{\boldsymbol{\beta}} = \underset{\mathbf{t} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{Y} - \mathbf{X}\mathbf{t}\|_2^2.$$

Multivariate case (3)

- ▶ Assume that $\text{rank}(\mathbf{X}) = p$.
- ▶ Analytic computation of the LSE:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}.$$

- ▶ Geometric interpretation of the LSE
- ▶ $\mathbf{X}\hat{\boldsymbol{\beta}}$ is the orthogonal projection of \mathbf{Y} onto the subspace spanned by the columns of \mathbf{X} :

$$\mathbf{X}\hat{\boldsymbol{\beta}} = P\mathbf{Y},$$

where $P = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

Linear regression with deterministic design and Gaussian noise (1)

Assumptions:

- ▶ The design matrix \mathbf{X} is deterministic and $\text{rank}(\mathbf{X}) = p$.
- ▶ The model is *homoscedastic*: $\varepsilon_1, \dots, \varepsilon_n$ are i.i.d.
- ▶ The noise vector ε is Gaussian:

$$\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n),$$

for some known or unknown $\sigma^2 > 0$.

Linear regression with deterministic design and Gaussian noise (2)

- ▶ LSE = MLE: $\hat{\beta} \sim \mathcal{N}_p(\beta, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$.
- ▶ Quadratic risk of $\hat{\beta}$: $\mathbb{E} \left[\|\hat{\beta} - \beta\|_2^2 \right] = \sigma^2 \text{tr}((\mathbf{X}'\mathbf{X})^{-1})$.
- ▶ Prediction error: $\mathbb{E} \left[\|\mathbf{Y} - \mathbf{X}\hat{\beta}\|_2^2 \right] = \sigma^2(n - p)$.
- ▶ Unbiased estimator of σ^2 : $\hat{\sigma}^2 = \frac{1}{n - p} \|\mathbf{Y} - \mathbf{X}\hat{\beta}\|_2^2$.

Theorem

- ▶ $(n - p) \frac{\hat{\sigma}^2}{\sigma^2} \sim \chi_{n-p}^2$.

- ▶ $\hat{\beta} \perp \hat{\sigma}^2$.

Significance tests (1)

- ▶ Test whether the j -th explanatory variable is significant in the linear regression ($1 \leq j \leq p$).
- ▶ $H_0 : \beta_j = 0$ v.s. $H_1 : \beta_j \neq 0$.
- ▶ If γ_j is the j -th diagonal coefficient of $(\mathbf{X}'\mathbf{X})^{-1}$ ($\gamma_j > 0$):

$$\frac{\hat{\beta}_j - \beta_j}{\sqrt{\hat{\sigma}^2 \gamma_j}} \sim t_{n-p}.$$

- ▶ Let $T_n^{(j)} = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 \gamma_j}}$.
- ▶ Test with non asymptotic level $\alpha \in (0, 1)$:

$$\delta_{\alpha}^{(j)} = \mathbb{1}_{|T_n^{(j)}| > q_{1-\frac{\alpha}{2}}},$$

where $q_{1-\frac{\alpha}{2}}$ is the $(1 - \alpha/2)$ -quantile of t_{n-p} .

Significance tests (2)

- ▶ Test whether a group of explanatory variables is significant in the linear regression.
- ▶ $H_0 : " \beta_j = 0, \forall j \in S "$ v.s. $H_1 : " \exists j \in S, \beta_j \neq 0 "$, where $S \subseteq \{1, \dots, p\}$.
- ▶ *Bonferroni's test*: $\delta_{\alpha}^B = \max_{j \in S} \delta_{\alpha/k}^{(j)}$, where $k = |S|$.
- ▶ δ_{α} has non asymptotic level at most α .

More tests (1)

Let G be a $k \times p$ matrix with $\text{rank}(G) = k$ ($k \leq p$) and $\lambda \in \mathbb{R}^k$.

- ▶ Consider the hypotheses:

$$H_0 : "G\beta = \lambda" \text{ v.s. } H_1 : "G\beta \neq \lambda".$$

- ▶ The setup of the previous slide is a particular case.
- ▶ If H_0 is true, then:

$$G\hat{\beta} - \lambda \sim \mathcal{N}_k (0, \sigma^2 G(\mathbf{X}'\mathbf{X})^{-1} G') ,$$

and

$$\sigma^{-2} (G\hat{\beta} - \lambda)' (G(\mathbf{X}'\mathbf{X})^{-1} G')^{-1} (G\beta - \lambda) \sim \chi_k^2.$$

More tests (2)

- ▶ Let $S_n = \frac{1}{\hat{\sigma}^2} \frac{(G\hat{\beta} - \lambda)' (G(\mathbf{X}'\mathbf{X})^{-1}G')^{-1} (G\beta - \lambda)}{k}$.
- ▶ If H_0 is true, then $S_n \sim F_{k,n-p}$.
- ▶ Test with non asymptotic level $alpha \in (0, 1)$:

$$\delta_\alpha = \mathbb{1}_{S_n > q_{1-\alpha}},$$

where $q_{1-\alpha}$ is the $(1 - \alpha)$ -quantile of $F_{k,n-p}$.

Definition

The *Fisher distribution with p and q degrees of freedom*, denoted by $F_{p,q}$, is the distribution of $\frac{U/p}{V/q}$, where:

- ▶ $U \sim \chi_p^2$, $V \sim \chi_q^2$,
- ▶ $U \perp\!\!\!\perp V$.

Concluding remarks

- ▶ Linear regression exhibits correlations, **NOT** causality
- ▶ Normality of the noise: One can use goodness of fit test to test whether the residuals $\hat{\varepsilon}_i = Y_i - \mathbf{X}'_i \hat{\boldsymbol{\beta}}$ are Gaussian.
- ▶ Deterministic design: If \mathbf{X} is not deterministic, all the above can be understood conditional on \mathbf{X} , if the noise is assumed to be Gaussian, conditionally on X .