Statistics for Applications

Chapter 6: Linear regression



Heuristics of the linear regression (1)

Consider a cloud of i.i.d. random points (X, Y;),i=1,...,n :
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Heuristics of the linear regression (2)

v

Idea: Fit the best line fitting the data.

v

Approximation: Y; ~ a+ bX;,i =1,...,n, for some
(unknown) a, b € R.

Find 4, b that approach a and b.

v

» More generally: Y; € R, X; € RY,

Yix~a+Xb, acR,beRC

v

Goal: Write a rigorous model and estimate a and b.



Heuristics of the linear regression (3)

Examples:

» Economics: Demand and price,
Di~a-+bp;, i=1,...,n

» ldeal gas law: PV = nRT,

InP,~a+blnV;+cInT;, i=1,...



Linear regression of a r.v. Y onarwv. X (1)

» Let X and Y be two real r.v. (non necessarily independent)
with two moments and such that Var(X) # 0.

> The theoretical linear regression of Y on X is the best
approximation in quadratic means of Y by a linear function of
X, i.e. the r.v. a+ bX, where a and b are the two real
numbers minimizing E {(Y —a— bX)2]

> By some simple algebra:
_ cov(X,Y)
— Var(X)

cov(X

- 2= B[Y] - bE[X] = E[¥] - 75 ;/)E[X].



Linear regression of a r.v. Y onarwv. X (2)

v

If e =Y — (a+ bX), then
Y =a+bX +¢,

with E[e] = 0 and cov(X,¢e) = 0.

v

Conversely: Assume that Y = a+ bX + ¢ for some a,b € R
and some centered r.v. ¢ that satisfies cov(X,¢) = 0.

v

E.g., if X 1L € or if E[¢|X] = 0, then cov(X,e) = 0.

v

Then, a + bX is the theoretical linear regression of Y on X.



Linear regression of a r.v. Y onarwv. X (3)

» A sample of n i.i.d. random pairs (Xi,.

.., Xn) with same
distribution as (X, Y) is available.

» We want to estimate a and b.



Linear regression of a r.v. Y onarwv. X (3)

» A sample of ni.i.d. random pairs (Xi,..., X,) with same
distribution as (X, Y) is available.

» We want to estimate a and b.
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Linear regression of a r.v. Y onarwv. X (3)

» A sample of n i.i.d. random pairs (Xi,.
distribution as (X, Y) is available.

» We want to estimate a and b.
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Linear regression of a r.v. Y onarwv. X (3)

» A sample of n i.i.d. random pairs (Xi,.
distribution as (X, Y) is available.

» We want to estimate a and b.
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Linear regression of a r.v. Y onarwv. X (3)

» A sample of ni.i.d. random pairs (X1, Y1),

same distribution as (X, Y) is available.

» We want to estimate a and b.
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Linear regression of a r.v. Y onar.wv. X (4)

Definition
The least squared error (LSE) estimator of (a, b) is the minimiser

of the sum of squared errors:

n

> (Yi—a—bX)>.

i=1

(4, b) is an M-estimator, and:



Linear regression of a r.v. Y onar.wv. X (5)
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Multivariate case (1)

Yi=XB+e;, i=1,...,n.

1

» Vector of explanatory variables or covariates: X; € RP (wlog,
assume its first coordinate is 1).

» Dependent variable: Y;.
» 3= (a,b'); Bi(= a) is called the intercept.

» {ei}i=1,..n noise terms satisfying cov(X;,e;) = 0.
Definition
The least squared error (LSE) estimator of 3 is the minimiser of
the sum of square errors:

B = argmin Z(Y, — Xlt)?

terRe



Multivariate case (2)

LSE in matrix form

» Let Y =(Y1,...,Y,) € R

v

Let X be the n x p matrix whose rows are X7,..., X/ (X is
called the design).

» Let e = (e1,...,&,) € R" (unobserved noise)
> Y = X3 +e.
» The LSE J satisfies:

B = argmin ||Y — Xt|)3.
teRP



Multivariate case (3)

v

Assume that rank(X) = p.

v

Analytic computation of the LSE:

B = (X'X)"IX'Y.

v

Geometric interpretation of the LSE

v

X,@ is the orthogonal projection of Y onto the subspace
spanned by the columns of X:

X3 = PY,

where P = X(X'X)~1X’,



Linear regression with deterministic design and Gaussian
noise (1)

Assumptions:

» The design matrix X is deterministic and rank(X) = p.
» The model is homoscedastic: €1,...,e, are i.i.d.

» The noise vector € is Gaussian:
2
& NNn(O,U /I'l)7

for some known or unknown o2 > 0.



Linear regression with deterministic design and Gaussian
noise (2)
» LSE = MLE: 3~ N, (8,0%(X'X)7}).

> Quadratic risk of 3:  E [HB - ﬁug} = o2tr (X'X)71).

> Prediction error: E [HY - XBH%} = o2(n— p).

1 N
» Unbiased estimator of o2: 5% = — Y — XﬁH%.
n—p
Theorem
~2
g 2
> (n - p)7 Xn—p-



Significance tests (1)

» Test whether the j-th explanatory variable is significant in the
linear regression (1 <j < p).

v

Ho:"Bj=0" v.s. Hy :"fj #0".

v

If ~; is the j-th diagonal coefficient of (X’X)~1 (v; > 0):
B; — B;
~ ~ th—p-
V627

sl T = D
62’yj
» Test with non asymptotic level o € (0, 1):

() — .
0q" = IL\T§’)|>qlf%’

where gi_g is the (1 — a/2)-quantile of t,_p.



Significance tests (2)

v

Test whether a group of explanatory variables is significant in
the linear regression.

v

Ho:"Bj=0,VjeS" vs. Hy:"3j€85,5 #0", where
SC{L....p}.

v

Bonferroni’s test: 55 = max 6U)k, where k = |S].
jes o/

v

0o has non asymptotic level at most «.



More tests (1)

Let G be a k x p matrix with rank(G) = k (k < p) and A € Rk,

» Consider the hypotheses:
Ho:"GB=X" vs. H:"GB#X".
» The setup of the previous slide is a particular case.
» If Hp is true, then:
GB — X~ N (0,52G(X'X)1G)
and

o 2(GB—A) (G(X'X)1G) T (GB—A) ~ 3.



More tests (2)

1(GB-A) (G(X'X)"16") 1 (GB - A)
2 k .

» If Hp is true, then S, ~ Fy ,_p.
» Test with non asymptotic level alpha € (0,1):
504 - ]15,,>q1,aa

where g1_, is the (1 — a)-quantile of Fy ,_.

Definition
The Fisher distribution with p and q degrees of freedom, denoted

by Fp g, is the distribution of U—/p where:

V/q

> UNX%,VNX%,
» Ul V.



Concluding remarks

> Linear regression exhibits correlations, NOT causality

» Normality of the noise: One can use goodness of fit test to
test whether the residuals &, = Y; — Xfﬂ are Gaussian.

» Deterministic design: If X is not deterministic, all the above
can be understood conditional on X, if the noise is assumed
to be Gaussian, conditionally on X.



