
Statistics for Applications

Chapter 6: Linear regression



Heuristics of the linear regression (1)

Consider a cloud of i.i.d. random points (Xi ,Yi ), i = 1, . . . , n :

 



Heuristics of the linear regression (2)

I Idea: Fit the best line fitting the data.

I Approximation: Yi ≈ a + bXi , i = 1, . . . , n, for some
(unknown) a, b ∈ R.

I Find â, b̂ that approach a and b.

I More generally: Yi ∈ R,Xi ∈ Rd ,

Yi ≈ a + X ′i b, a ∈ R, b ∈ Rd .

I Goal: Write a rigorous model and estimate a and b.



Heuristics of the linear regression (3)

Examples:

I Economics: Demand and price,

Di ≈ a + bpi , i = 1, . . . , n.

I Ideal gas law: PV = nRT ,

lnPi ≈ a + b lnVi + c lnTi , i = 1, . . . , n.



Linear regression of a r.v. Y on a r.v. X (1)

I Let X and Y be two real r.v. (non necessarily independent)
with two moments and such that Var(X ) 6= 0.

I The theoretical linear regression of Y on X is the best
approximation in quadratic means of Y by a linear function of
X , i.e. the r.v. a + bX , where a and b are the two real

numbers minimizing E
[
(Y − a− bX )2

]
.

I By some simple algebra:

I b =
cov(X ,Y )

Var(X )
,

I a = E[Y ]− bE[X ] = E[Y ]− cov(X ,Y )

Var(X )
E[X ].



Linear regression of a r.v. Y on a r.v. X (2)

I If ε = Y − (a + bX ), then

Y = a + bX + ε,

with E[ε] = 0 and cov(X , ε) = 0.

I Conversely: Assume that Y = a + bX + ε for some a, b ∈ R
and some centered r.v. ε that satisfies cov(X , ε) = 0.

I E.g., if X ⊥⊥ ε or if E[ε|X ] = 0, then cov(X , ε) = 0.

I Then, a + bX is the theoretical linear regression of Y on X .



Linear regression of a r.v. Y on a r.v. X (3)
I A sample of n i.i.d. random pairs (X1, . . . ,Xn) with same

distribution as (X ,Y ) is available.

I We want to estimate a and b.
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Linear regression of a r.v. Y on a r.v. X (4)

Definition
The least squared error (LSE) estimator of (a, b) is the minimiser
of the sum of squared errors:

n∑
i=1

(Yi − a− bXi )
2.

(â, b̂) is an M-estimator, and:

b̂ =
XY − X̄ Ȳ

X 2 − X̄ 2
,

â = Ȳ − b̂X̄ .



Linear regression of a r.v. Y on a r.v. X (5)

- SSE2.pdf

 



Multivariate case (1)

Yi = X′iβ + εi , i = 1, . . . , n.

I Vector of explanatory variables or covariates: Xi ∈ Rp (wlog,
assume its first coordinate is 1).

I Dependent variable: Yi .

I β = (a,b′)′; β1(= a) is called the intercept.

I {εi}i=1,...,n: noise terms satisfying cov(Xi , εi ) = 0.

Definition
The least squared error (LSE) estimator of β is the minimiser of
the sum of square errors:

β̂ = argmin
t∈Rp

n∑
i=1

(Yi − X′it)
2



Multivariate case (2)

LSE in matrix form

I Let Y = (Y1, . . . ,Yn)′ ∈ Rn.

I Let X be the n × p matrix whose rows are X′1, . . . ,X
′
n (X is

called the design).

I Let ε = (ε1, . . . , εn)′ ∈ Rn (unobserved noise)

I Y = Xβ + ε.

I The LSE β̂ satisfies:

β̂ = argmin
t∈Rp

‖Y − Xt‖22.



Multivariate case (3)

I Assume that rank(X) = p.

I Analytic computation of the LSE:

β̂ = (X′X)−1X′Y.

I Geometric interpretation of the LSE

I Xβ̂ is the orthogonal projection of Y onto the subspace
spanned by the columns of X:

Xβ̂ = PY,

where P = X(X′X)−1X′.



Linear regression with deterministic design and Gaussian
noise (1)

Assumptions:

I The design matrix X is deterministic and rank(X) = p.

I The model is homoscedastic : ε1, . . . , εn are i.i.d.

I The noise vector ε is Gaussian:

ε ∼ Nn(0, σ2In),

for some known or unknown σ2 > 0.



Linear regression with deterministic design and Gaussian
noise (2)

I LSE = MLE: β̂ ∼ Np

(
β, σ2(X′X)−1

)
.

I Quadratic risk of β̂: E
[
‖β̂ − β‖22

]
= σ2tr

(
(X′X)−1

)
.

I Prediction error: E
[
‖Y − Xβ̂‖22

]
= σ2(n − p).

I Unbiased estimator of σ2: σ̂2 =
1

n − p
‖Y − Xβ̂‖22.

Theorem

I (n − p)
σ̂2

σ2
∼ χ2

n−p.

I β̂ ⊥⊥ σ̂2.



Significance tests (1)

I Test whether the j-th explanatory variable is significant in the
linear regression (1 ≤ j ≤ p).

I H0 : ”βj = 0” v.s. H1 : ”βj 6= 0”.

I If γj is the j-th diagonal coefficient of (X′X)−1 (γj > 0):

β̂j − βj√
σ̂2γj

∼ tn−p.

I Let T
(j)
n =

β̂j√
σ̂2γj

.

I Test with non asymptotic level α ∈ (0, 1):

δ(j)α = 1|T (j)
n |>q1−α

2

,

where q1−α
2

is the (1− α/2)-quantile of tn−p.



Significance tests (2)

I Test whether a group of explanatory variables is significant in
the linear regression.

I H0 : ”βj = 0,∀j ∈ S” v.s. H1 : ”∃j ∈ S , βj 6= 0”, where
S ⊆ {1, . . . , p}.

I Bonferroni’s test: δBα = max
j∈S

δ
(j)
α/k , where k = |S |.

I δα has non asymptotic level at most α.



More tests (1)

Let G be a k × p matrix with rank(G ) = k (k ≤ p) and λ ∈ Rk .

I Consider the hypotheses:

H0 : ”Gβ = λ” v.s. H1 : ”Gβ 6= λ”.

I The setup of the previous slide is a particular case.

I If H0 is true, then:

G β̂ − λ ∼ Nk

(
0, σ2G (X′X)−1G ′

)
,

and

σ−2(G β̂ − λ)′
(
G (X′X)−1G ′

)−1
(Gβ − λ) ∼ χ2

k .



More tests (2)

I Let Sn =
1

σ̂2
(G β̂ − λ)′

(
G (X′X)−1G ′

)−1
(Gβ − λ)

k
.

I If H0 is true, then Sn ∼ Fk,n−p.

I Test with non asymptotic level alpha ∈ (0, 1):

δα = 1Sn>q1−α ,

where q1−α is the (1− α)-quantile of Fk,n−p.

Definition

The Fisher distribution with p and q degrees of freedom, denoted

by Fp,q, is the distribution of
U/p

V /q
, where:

I U ∼ χ2
p, V ∼ χ2

q,

I U ⊥⊥ V .



Concluding remarks

I Linear regression exhibits correlations, NOT causality

I Normality of the noise: One can use goodness of fit test to
test whether the residuals ε̂i = Yi − X′i β̂ are Gaussian.

I Deterministic design: If X is not deterministic, all the above
can be understood conditional on X, if the noise is assumed
to be Gaussian, conditionally on X .


