
Statistics for Applications

Chapter 5: Testing goodness of fit



Cdf and empirical cdf (1)

Let X1, . . . ,Xn be i.i.d. real random variables. Recall the cdf of X1

is defined as:

F (t) = P[X1 ≤ t], ∀t ∈ R.

It completely characterizes the distribution of X1.

Definition
The empirical cdf of the sample X1, . . . ,Xn is defined as:

Fn(t) =
1

n

n∑
i=1

1Xi≤t

=
#{i = 1, . . . , n : Xi ≤ t}

n
, ∀t ∈ R.



Cdf and empirical cdf (2)

I Let Z be a r.v. chosen at random among X1, . . . ,Xn.

I Conditionally on the sample X1, . . . ,Xn, if the Xi ’s are
pairwise distinct,

Z ∼ U ({X1, . . . ,Xn}) .

I Fn is the conditional cdf of Z given the sample.

I F is the (unconditional) cdf of Z .



Cdf and empirical cdf (3)

By the LLN, for all t ∈ R,

Fn(t)
a.s.−−−→

n→∞
F (t).

Glivenko-Cantelli Theorem (Fundamental theorem of
statistics)

sup
t∈R
|Fn(t)− F (t)| a.s.−−−→

n→∞
0.

Hence, Fn(t) brings a lot of information about the distribution of
the Xi ’s when n is large.



Cdf and empirical cdf (4)

By the CLT, for all t ∈ R,

√
n (Fn(t)− F (t))

(d)−−−→
n→∞

N
(
0,F (t) (1− F (t))

)
.

Donsker’s Theorem

If F is continuous, then

√
n sup

t∈R
|Fn(t)− F (t)| (d)−−−→

n→∞
sup

0≤t≤1
|B(t)|,

where B is a Brownian bridge on [0, 1].



Kolmogorov-Smirnov test (1)

I Let X1, . . . ,Xn be i.i.d. real random variables with unknown
cdf F and let F 0 be a continuous cdf.

I Consider the two hypotheses:

H0 : ”F = F 0” v.s. H1 : ”F 6= F 0”.

I Let Fn be the empirical cdf of the sample X1, . . . ,Xn.

I If F = F 0, then Fn(t) ≈ F 0(t), uniformly in t ∈ [0, 1].



Kolmogorov-Smirnov test (2)

I Let Tn = sup
t∈R

√
n
∣∣Fn(t)− F 0(t)

∣∣.
I By Donsker’s theorem, if H0 is true, then Tn

(d)−−−→
n→∞

Z ,

where Z has a known distribution (supremum of a Brownian
bridge).

I KS test with asymptotic level α:

δKSα = 1Tn>q1−α ,

where q1−α is the (1− α)-quantile of Z (obtained in tables).

I p-value of KS test: P[Z > Tn|Tn].



Kolmogorov-Smirnov test (3)

Remarks:

I In practice, how to compute Tn ?

I F 0 is non decreasing, Fn is piecewise constant, with jumps at
ti = Xi , i = 1, . . . , n.

I Let X(1) ≤ X(2) ≤ . . . ≤ X(n) be the reordered sample.

I The expression for Tn reduces to the following practical
formula:

Tn =
√
n max
i=1,...,n

{
max

(∣∣∣∣ i − 1

n
− F 0(X(i))

∣∣∣∣ , ∣∣∣∣ in − F 0(X(i))

∣∣∣∣)}.



Kolmogorov-Smirnov test (4)

I Tn is called a pivotal statistic : If H0 is true, the distribution of

Tn does not depend on the distribution of the Xi ’s and it is

easy to reproduce it in simulations.

I Indeed, let Ui = F 0(Xi ), i = 1, . . . , n and let Gn be the

empirical cdf of U1, . . . ,Un.

I If H0 is true, then U1, . . . ,Un
i .i .d .∼ U ([0.1])

and Tn = sup
0≤x≤1

√
n |Gn(x)− x |.



Kolmogorov-Smirnov test (5)

I For some large integer M:
I Simulate M i.i.d. copies T 1

n , . . . ,T
M
n of Tn;

I Estimate the (1− α)-quantile q
(n)
1−α of Tn by taking the sample

(1− α)-quantile q̂
(n,M)
1−α of T 1

n , . . . ,T
M
n .

I Test with approximate level α:

δα = 1
Tn>q̂

(n,M)
1−α

.

I Approximate p-value of this test:

p-value ≈ #{j = 1, . . . ,M : T j
n > Tn}

M
.

I See Optional Exercises 3, Ex. 4.



Test of independence (1)

I Consider a sample (X1,Y1), . . . , (Xn,Yn) of i.i.d. vectors on a
finite space {a1, . . . , aK} × {b1, . . . , bL}.

I Consider the two hypotheses:

H0 : ”X1 ⊥⊥ Y1” v.s. H1 : ”X1 and Y1 are not independent”.

I For (k , l) ∈ {1, . . . ,K} × {1, . . . , L}, set:

I pk,l = P[X1 = ak ,Y1 = bl ],

I pk,· = P[X1 = ak ],

I p·,l = P[Y1 = bl ].

I H0 reduces to:

pk,l = pk,· × p·,l , ∀k , l .



Test of independence (2)

I Set p̂k,l =
Nk,l

n
, p̂k,· =

Nk,·
n

and p̂·,l =
N·,l
n

, where

I Nk,l = #{i = 1 . . . , n : Xi = ak ,Yi = bl},
I Nk,· = #{i : Xi = ak},
I N·,l = #{i : Yi = bl}.

I Remark: p̂k,l is the MLE of pk,l .

I If H0 is true, then p̂k,l ≈ p̂k,·p̂·,l , ∀k , l .

I Let Tn = n
K∑

k=1

L∑
l=1

(p̂k,l − p̂k,·p̂·,l)
2

p̂k,·p̂·,l
.



Test of independence (3)

I If H0 is true, then

Tn
(d)−−−→

n→∞
χ2

(K−1)(L−1).

I Test of independence with asymptotic level α:

δα = 1Tn>q1−α ,

where q1−α is the (1− α)-quantile of χ2
(K−1)(L−1).

I p-value: P[Z > Tn|Tn], where Z ∼ χ2
(K−1)(L−1) and Z ⊥⊥ Tn.



χ2 goodness-of-fit test, finite case (1)

I Let X1, . . . ,Xn be i.i.d. random variables on some finite space
E = {a1, . . . , aK}, with some probability measure P.

I Let (Pθ)θ∈Θ be a parametric family of probability distributions
on E .

I Example: On E = {1, . . . ,K}, consider the family of binomial
distributions (B(K , p))p∈(0,1).

I For j = 1, . . . ,K and θ ∈ Θ, set

pj(θ) = Pθ[Y = aj ], where Y ∼ Pθ

and
pj = P[X1 = aj ].



χ2 goodness-of-fit test, finite case (2)

I Consider the two hypotheses:

H0 : ”P ∈ (Pθ)θ∈Θ ” v.s. H1 : ”P /∈ (Pθ)θ∈Θ ”.

I Testing H0 means testing whether the statistical model(
E ,P(E ), (Pθ)θ∈Θ

)
fits the data (e.g., whether the data are

indeed from a binomial distribution).

I H0 is equivalent to:

”pj = pj(θ), ∀j = 1, . . . ,K , for some θ ∈ Θ.”



χ2 goodness-of-fit test, finite case (3)

I Let θ̂ be the MLE of θ when assuming H0 is true.

I Let p̂j =
1

n

n∑
i=1

1Xi=aj =
#{i : Xi = aj}

n
, j = 1, . . . ,K .

I Idea: If H0 is true, then pj = pj(θ) so both p̂j and pj(θ̂) are

good estimators or pj . Hence, p̂j ≈ pj(θ̂), ∀j = 1, . . . ,K .

I Define the test statistic: Tn = n
K∑
j=1

(
p̂j − pj(θ̂)

)2

pj(θ̂)
.



χ2 goodness-of-fit test, finite case (4)

I Under some technical assumptions, if H0 is true, then

Tn
(d)−−−→

n→∞
χ2
K−d−1,

where d is the size of the parameter θ (Θ ⊆ Rd and
d < K − 1).

I Test with asymptotic level α ∈ (0, 1):

δα = 1Tn>q1−α ,

where q1−α is the (1− α)-quantile of χ2
K−d−1.

I p-value: P[Z > Tn|Tn], where Z ∼ χ2
K−d−1 and Z ⊥⊥ Tn.



χ2 goodness-of-fit test, infinite case (1)

I If E is infinite (e.g. E = N,E = R, ...):

I Partition E into K disjoint bins:

E = A1 ∪ . . . ∪ AK .

I Define, for θ ∈ Θ and j = 1, . . . ,K :

I pj(θ) = Pθ[Y ∈ Aj ], for Y ∼ Pθ,

I pj = P[X1 ∈ Aj ],

I p̂j =
1

n

n∑
i=1

1Xi∈Aj =
#{i : Xi ∈ Aj}

n
,

I θ̂: same as in the previous case.



χ2 goodness-of-fit test, infinite case (2)

I As previously, let Tn = n
K∑
j=1

(
p̂j − pj(θ̂)

)2

pj(θ̂)
.

I Under some technical assumptions, if H0 is true, then

Tn
(d)−−−→

n→∞
χ2
K−d−1,

where d is the size of the parameter θ (Θ ⊆ Rd and
d < K − 1).

I Test with asymptotic level α ∈ (0, 1):

δα = 1Tn>q1−α ,

where q1−α is the (1− α)-quantile of χ2
K−d−1.



χ2 goodness-of-fit test, infinite case (3)

I Practical issues:

I Choice of K ?

I Choice of the bins A1, . . . ,AK ?

I Computation of pj(θ) ?

I Example 1: Let E = N and H0 : ”P ∈ (Poiss(λ))λ>0 ”.

I If one expects λ to be no larger than some λmax , one can

choose A1 = {0},A2 = {1}, . . . ,AK−1 = {K − 2},AK =

{K − 1,K ,K + 1, . . .}, with K large enough such that

pK (λmax) ≈ 0.


