
Statistics for Applications

Chapter 4: Parametric hypothesis testing



Heuristics

Main idea: Decide whether to validate or reject hypotheses

I After tossing a coin many times, how to decide whether it is a
fair one ?

I After drawing blood from a patient and measure the
concentration of antibody in the sample, how to decide
whether the patient is contaminated with a virus ?

Formally, this translates into:

I Decide whether p = 1/2 from a sample of n i.i.d. Bernoulli
random variables;

I Decide whether c > c0 from a sample of n i.i.d. random
variables with N (c , σ2) distribution.



Heuristics (2)

Example 1: A coin is tossed 80 times, and Heads are obtained 54
times. Can we conclude that the coin is significantly unfair ?

I n = 80, X1, . . . ,Xn
iid∼ Ber(p);

I X̄n = 54/80 = .68

I If it was true that p = .5: By CLT+Slutsky’s theorem,

√
n

X̄n − .5√
X̄n(1− X̄n)

≈ N (0, 1).

I
√
n

X̄n − .5√
X̄n(1− X̄n)

≈ 3.45

I Conclusion: It seems quite reasonable to reject the
hypothesis ”p = .5”.



Heuristics (3)

Example 2: A coin is tossed 30 times, and Heads are obtained 13
times. Can we conclude that the coin is significantly unfair ?

I n = 30,X1, . . . ,Xn
iid∼ Ber(p);

I X̄n = 13/30 ≈ .43

I If it was true that p = .5: By CLT+Slutsky’s theorem,

√
n

X̄n − .5√
X̄n(1− X̄n)

≈ N (0, 1).

I
√
n

X̄n − .5√
X̄n(1− X̄n)

≈ −.77

I Conclusion: It seems impossible to reject significantly the
hypothesis ”p = .5”.



Statistical formulation (1)

I Consider a sample X1, . . . ,Xn of i.i.d. random variables and a
statistical model (E ,F , (Pθ)θ∈Θ).

I Let Θ0 and Θ1 be disjoint subsets of Θ.

I Consider the two hypotheses:

{
H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

I H0 is the null hypothesis, H1 is the alternative hypothesis.

I If we believe that the true θ is either in Θ0 or in Θ1, we may
want to test H0 against H1.

I We want to decide whether to reject H0 (look for evidence
against H0).



Statistical formulation (2)

I H0 and H1 are not symmetric. E.g., H0: ”Patient is sick”
(c > c0) vs. H1: ”Patient is healthy” (c ≤ c0).

I A test is a statistic δ ∈ {0, 1} such that:
I If δ = 0, H0 is not rejected;
I If δ = 1, H0 is rejected.

I Coin example: H0: ”p = 1/2” vs. H1: ”p 6= 1/2”.

I δ = 1∣∣∣∣√n X̄n−.5√
X̄n(1−X̄n)

∣∣∣∣>C
, for some threshold C > 0.

I How to choose C ?



Statistical formulation (3)

I Rejection region of a test δ:

Rδ = {x ∈ En : δ(x) = 1}.

I Type 1 error of a test δ (rejecting H0 when it is actually true):

αδ : Θ0 → R
θ 7→ Pθ[δ = 1].

I Type 2 error of a test δ (not rejecting H0 although H1 is
actually true):

βδ : Θ1 → R
θ 7→ Pθ[δ = 0].

I Power of a test δ:

πδ = inf
θ∈Θ1

(1− βδ(θ)) .



Statistical formulation (4)

I A test δ has level α if

αδ(θ) ≤ α, ∀θ ∈ Θ0.

I A test δ has asymptotic level α if

lim
n→∞

αδ(θ) ≤ α, ∀θ ∈ Θ0.

I In general, a test has the form

δ = 1Tn>c ,

for some statistic Tn and threshold c ∈ R.

I Tn is called the test statistic. The rejection region is
Rδ = {Tn > c}.



Example (1)

I Let X1, . . . ,Xn
iid∼ Ber(p), for some unknown p ∈ (0, 1).

I We want to test:

H0: ”p = 1/2” vs. H1: ”p 6= 1/2”

with asymptotic level α ∈ (0, 1).

I Let Tn =

∣∣∣∣∣√n p̂n − 0.5√
p̂n(1− p̂n)

∣∣∣∣∣, where p̂n is the MLE.

I If H0 is true, then by CLT and Slutsky’s theorem,

P[Tn > q1−α/2] −−−→
n→∞

0.05

I Let δα = 1Tn>q1−α/2
.



Example (2)

Coming back to the two previous coin examples: For α = 5%,
q1−α/2 = 1.96, so:

I In Example 1, H0 is rejected at the asymptotic level 5% by
the test δ5%;

I In Example 2, H0 is not rejected at the asymptotic level 5%
by the test δ5%.

Question: In Example 1, for what level α would δα not reject H0

? And in Example 2, at which level α would δα reject H0 ?



p-value

Definition

The (asymptotic) p-value of a test δα is the smallest (asymptotic)
level α at which δα rejects H0. It is random, it depends on the
sample.

Golden rule

p-value ≤ α ⇔ H0 is rejected by δα, at the (asymptotic) level α.

The smaller the p-value, the more confidently one can reject
H0.

I Example 1: p-value = P[|Z | > 3.45]� .01.

I Example 2: p-value = P[|Z | > .77] ≈ .44.



Neyman-Pearson’s paradigm

Idea: For given hypotheses, among all tests of level/asymptotic
level α, is it possible to find one that has maximal power ?

Example: The trivial test δ = 0 that never rejects H0 has a
perfect level (α = 0) but poor power (πδ = 0).

Neyman-Pearson’s theory provides (the most) powerful tests
with given level. In 18.650, we only study several cases.



Reminder about the χ2 distributions

Definition
For a positive integer d , the χ2 distribution with d degrees of
freedom is the law of the random variable Z 2

1 + Z 2
2 + . . .+ Z 2

d ,

where Z1, . . . ,Zd
iid∼ N (0, 1).

Examples:

I If Z ∼ Nd(0, Id), then ‖Z‖2
2 ∼ χ2

d .

I Cochran’s theorem states that for X1, . . . ,Xn
iid∼ N (µ, σ2), if

Sn is the sample variance, then

nSn
σ2
∼ χ2

n−1.

I χ2
2 = Exp(1/2).



Reminder about the Student’s distributions

Definition
For a positive integer d , the Student’s distribution with d degrees
of freedom (denoted by td) is the law of the random variable

U√
V /d

, where U ∼ N (0, 1), V ∼ χ2
d and U ⊥⊥ V .

Example:

I Cochran’s theorem states that for X1, . . . ,Xn
iid∼ N (µ, σ2), if

Sn is the sample variance, then

√
n − 1

X̄n − µ√
Sn
∼ tn−1.



Wald’s test (1)

I Consider an i.i.d. sample X1, . . . ,Xn with statistical model
(E ,F , (Pθ)θ∈Θ), where Θ ⊆ Rd (d ≥ 1) and let θ0 ∈ Θ be
fixed and given.

I Consider the following hypotheses:{
H0 : θ = θ0

H1 : θ 6= θ0.

I Let θ̂MLE be the MLE. Assume the MLE technical conditions
are satisfied.

I If H0 is true, then

√
n I (θ̂MLE )1/2

(
θ̂MLE
n − θ0

)
(d)−−−→

n→∞
Nd (0, Id) w.r.t. Pθ0 .



Wald’s test (2)

I Hence,

n
(
θ̂MLE
n − θ0

)′
I (θ̂MLE )

(
θ̂MLE
n − θ0

)
︸ ︷︷ ︸

Tn

(d)−−−→
n→∞

χ2
d w.r.t. Pθ0 .

I Wald’s test with asymptotic level α ∈ (0, 1):

δ = 1Tn>q1−α ,

where qα is the (1− α)-quantile of χ2
d (see tables).

I Remark: Wald’s test is also valid if H1 has the form ”θ > θ0”
or ”θ < θ0” or ”θ = θ1”...



Likelihood ratio test (1)

I Consider an i.i.d. sample X1, . . . ,Xn with statistical model
(E ,F , (Pθ)θ∈Θ), where Θ ⊆ Rd (d ≥ 1).

I Suppose the null hypothesis has the form

H0 : (θr+1, . . . , θd) = (θ
(0)
r+1, . . . , θ

(0)
d ),

for some fixed and given numbers θ
(0)
r+1, . . . , θ

(0)
d .

I Let
θ̂n = argmax

θ∈Θ
`n(θ) (MLE)

and
θ̂cn = argmax

θ∈Θ0

`n(θ) (”constrained MLE”)



Likelihood ratio test (2)

I Test statistic:

Tn = 2
(
`n(θ̂n)− `n(θ̂cn)

)
.

I Theorem
Assume H0 is true and the MLE technical conditions are satisfied.
Then,

Tn
(d)−−−→

n→∞
χ2
d−r w.r.t. Pθ.

I Likelihood ratio test with asymptotic level α ∈ (0, 1):

δ = 1Tn>q1−α ,

where q1−α is the (1− α)-quantile of χ2
d−r (see tables).



Testing implicit hypotheses (1)

I Let X1, . . . ,Xn be i.i.d. random variables and let θ ∈ Rd be a
parameter associated with the distribution of X1 (e.g. a
moment, the parameter of a statistical model, etc...)

I Let g : Rd → Rk be continuously differentiable (with k < d).

I Consider the following hypotheses:{
H0 : g(θ) = 0

H1 : g(θ) 6= 0.

I E.g. g(θ) = (θ1, θ2) (k = 2), or g(θ) = θ1 − θ2 (k = 1), or...



Testing implicit hypotheses (2)

I Suppose an asymptotically normal estimator θ̂n is available:

√
n
(
θ̂n − θ

)
(d)−−−→

n→∞
Nd(0,Σ(θ)).

I Delta method:

√
n
(
g(θ̂n)− g(θ)

)
(d)−−−→

n→∞
Nk (0, Γ(θ)) ,

where Γ(θ) = ∇g(θ)′Σ(θ)∇g(θ) ∈ Rk×k .

I Assume Σ(θ) is invertible and ∇g(θ) has rank k . So, Γ(θ) is
invertible and

√
n Γ(θ)−1/2

(
g(θ̂n)− g(θ)

)
(d)−−−→

n→∞
Nk (0, Ik) .



Testing implicit hypotheses (3)

I Then, by Slutsky’s theorem, if Γ(θ) is continuous in θ,

√
n Γ(θ̂n)−1/2

(
g(θ̂n)− g(θ)

)
(d)−−−→

n→∞
Nk (0, Ik) .

I Hence, if H0 is true, i.e., g(θ) = 0,

ng(θ̂n)′Γ−1(θ̂n)g(θ̂n)︸ ︷︷ ︸
Tn

(d)−−−→
n→∞

χ2
k .

I Test with asymptotic level α:

δ = 1Tn>q1−α ,

where q1−α is the (1− α)-quantile of χ2
k (see tables).



The multinomial case: χ2 test (1)

Let E = {a1, . . . , aK} be a finite space and (Pp)p∈∆K
be the family

of all probability distributions on E :

I ∆K =

p = (p1, . . . , pK ) ∈ (0, 1)K :
K∑
j=1

pj = 1

.

I For p ∈ ∆K and X ∼ Pp,

Pp[X = aj ] = pj , j = 1, . . . ,K .



The multinomial case: χ2 test (2)

I Let X1, . . . ,Xn
iid∼ Pp, for some unknown p ∈ ∆K , and let

p0 ∈ ∆K be fixed.

I We want to test:

H0: ” p = p0 ” vs. H1: ” p 6= p0 ”

with asymptotic level α ∈ (0, 1).

I Example: If p0 = (1/K , 1/K , . . . , 1/K ), we are testing
whether Pp is the uniform distribution on E .



The multinomial case: χ2 test (3)

I Likelihood of the model:

Ln(X1, . . . ,Xn,p) = pN1
1 pN2

2 . . . pNK
K ,

where Nj = #{i = 1, . . . , n : Xi = aj}.

I Let p̂ be the MLE:

p̂j =
Nj

n
, j = 1, . . . ,K .

B p̂ maximizes ln Ln(X1, . . . ,Xn,p) under the constraint

K∑
j=1

pj = 1.



The multinomial case: χ2 test (4)

I If H0 is true, then
√
n(p̂− p0) is asymptotically normal, and

the following holds.

Theorem

n
k∑

j=1

(
p̂j − p0

j

)2

p0
j︸ ︷︷ ︸

Tn

(d)−−−→
n→∞

χ2
K−1.

I χ2 test with asymptotic level α: δα = 1Tn>q1−α ,
where q1−α is the (1− α)-quantile of χ2

K−1.

I Asymptotic p-value of this test: p − value = P [Z > Tn|Tn],
where Z ∼ χ2

K−1 and Z ⊥⊥ Tn.



The Gaussian case: Student’s test (1)

I Let X1, . . . ,Xn
iid∼ N (µ, σ2), for some unknown µ ∈ R, σ2 > 0

and let µ0 ∈ R be fixed, given.

I We want to test:

H0: ”µ = µ0” vs. H1: ”µ 6= µ0”

with asymptotic level α ∈ (0, 1).

I If σ2 is known: Let Tn =
√
n

X̄n − µ0

σ
. Then, Tn ∼ N (0, 1)

and
δα = 1|Tn|>q1−α/2

is a test with (non asymptotic) level α.



The Gaussian case: Student’s test (2)

If σ2 is unknown:

I Let T̃n =
√
n − 1

X̄n − µ0√
Sn

, where Sn is the sample variance.

I Cochran’s theorem:

I X̄n ⊥⊥ Sn;

I
nSn
σ2
∼ χ2

n−1.

I Hence, T̃n ∼ tn−1: Student’s distribution with n − 1 degrees
of freedom.



The Gaussian case: Student’s test (3)

I Student’s test with (non asymptotic) level α ∈ (0, 1):

δα = 1|T̃n|>q1−α/2
,

where q1−α/2 is the (1− α/2)-quantile of tn−1.

I If H1 is ”µ > µ0”, Student’s test with level α ∈ (0, 1) is:

δ′α = 1
T̃n>q1−α

,

where q1−α is the (1− α)-quantile of tn−1.

I Advantage of Student’s test:
I Non asymptotic
I Can be run on small samples

I Drawback of Student’s test: It relies on the assumption that
the sample is Gaussian.


