

Statistics for Applications

Chapter 3: Parameter Estimation

Likelihood, Discrete case (1)

Let $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \dots, X_n . Assume that E is discrete (i.e., finite or countable).

Definition

The *likelihood* of the model is the map L_n (or just L) defined as:

$$\begin{aligned} L_n : E^n \times \Theta &\rightarrow \mathbb{R} \\ (x_1, \dots, x_n, \theta) &\mapsto \mathbb{P}_\theta[X_1 = x_1, \dots, X_n = x_n]. \end{aligned}$$

Likelihood, Discrete case (2)

Example 1 (Bernoulli trials): If $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Ber}(p)$ for some $p \in (0, 1)$:

- ▶ $E = \{0, 1\}$;
- ▶ $\Theta = (0, 1)$;
- ▶ $\forall (x_1, \dots, x_n) \in \{0, 1\}^n, \quad \forall p \in (0, 1),$

$$\begin{aligned} L(x_1, \dots, x_n, p) &= \prod_{i=1}^n \mathbb{P}_p[X_i = x_i] \\ &= \prod_{i=1}^n p^{x_i} (1-p)^{1-x_i} \\ &= p^{\sum_{i=1}^n x_i} (1-p)^{n - \sum_{i=1}^n x_i}. \end{aligned}$$

Likelihood, Discrete case (3)

Example 2 (Poisson model):

If $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Poiss}(\lambda)$ for some $\lambda > 0$:

- ▶ $E = \mathbb{N}$;
- ▶ $\Theta = (0, \infty)$;
- ▶ $\forall (x_1, \dots, x_n) \in \{0, 1\}^n, \quad \forall \lambda > 0,$

$$\begin{aligned} L(x_1, \dots, x_n, p) &= \prod_{i=1}^n \mathbb{P}_\lambda[X_i = x_i] \\ &= \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} \\ &= e^{-n\lambda} \frac{\lambda^{\sum_{i=1}^n x_i}}{x_1! \dots x_n!}. \end{aligned}$$

Likelihood, Continuous case (1)

Let $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$ be a statistical model associated with a sample of i.i.d. r.v. X_1, \dots, X_n . Assume that all the \mathbb{P}_θ have a density f_θ w.r.t. the Lebesgue measure.

Definition

The *likelihood* of the model is the map L defined as:

$$\begin{aligned} L &: E^n \times \Theta \rightarrow \mathbb{R} \\ (x_1, \dots, x_n, \theta) &\mapsto \prod_{i=1}^n f_\theta(x_i). \end{aligned}$$

Likelihood, Continuous case (2)

Example 1 (Gaussian model): If $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for some $\mu \in \mathbb{R}, \sigma^2 > 0$:

- ▶ $E = \mathbb{R}$;
- ▶ $\Theta = \mathbb{R} \times \mathbb{R}_+^*$;
- ▶ $\forall (x_1, \dots, x_n) \in \{0, 1\}^n, \quad \forall (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^*$,

$$L(x_1, \dots, x_n, \mu, \sigma^2) = \frac{1}{(\sqrt{2\pi\sigma^2})^n} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right).$$

Maximum likelihood estimator (1)

Let X_1, \dots, X_n be an i.i.d. sample associated with a statistical model $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$ and let L be the corresponding likelihood.

Definition

The *likelihood estimator* of θ is defined as:

$$\hat{\theta}_n^{MLE} = \operatorname{argmax}_{\theta \in \Theta} L(X_1, \dots, X_n, \theta),$$

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact that

$$\hat{\theta}_n^{MLE} = \operatorname{argmax}_{\theta \in \Theta} \ln L(X_1, \dots, X_n, \theta).$$

Maximum likelihood estimator (2)

Examples

- ▶ Bernoulli trials: $\hat{p}_n^{MLE} = \bar{X}_n$.
- ▶ Poisson model: $\hat{\lambda}_n^{MLE} = \bar{X}_n$.
- ▶ Gaussian model: $(\hat{\mu}_n, \hat{\sigma}_n^2) = (\bar{X}_n, \hat{S}_n)$.

Maximum likelihood estimator (3)

Definition: Fisher information

Define the log-likelihood for one observation as:

$$\ell(\theta) = \ln L_1(X, \theta), \quad \theta \in \Theta.$$

Assume that ℓ is a.s. twice differentiable. Under some regularity conditions, the *Fisher information* of the statistical model is defined as:

$$I(\theta) = \mathbb{V}_\theta (\nabla_\theta \ell(\theta)) = -\mathbb{E}_\theta \left[\frac{\partial^2 \ell}{\partial \theta \partial \theta'}(\theta) \right].$$

Maximum likelihood estimator (4)

Theorem

Let $\theta^* \in \Theta$ (the *true* parameter). Assume the following:

1. The model is identified.
2. For all $\theta \in \Theta$, the support of \mathbb{P}_θ does not depend on θ ;
3. θ^* is not on the boundary of Θ ;
4. $I(\theta)$ is invertible in a neighborhood of θ^* ;
5. A few more technical conditions.

Then, $\hat{\theta}_n^{MLE}$ satisfies:

- $\hat{\theta}_n^{MLE} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \theta^*$ w.r.t. \mathbb{P}_{θ^*} ;
- $\sqrt{n} \left(\hat{\theta}_n^{MLE} - \theta^* \right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N} \left(0, I(\theta^*)^{-1} \right)$ w.r.t. \mathbb{P}_{θ^*} .

Method of moments (1)

Let X_1, \dots, X_n be an i.i.d. sample associated with a statistical model $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$. Assume that $\Theta \subseteq \mathbb{R}^d$, for some $d \geq 1$.

- ▶ *Population moments*: Let $m_k(\theta) = \mathbb{E}_\theta[X_1^k]$, $1 \leq k \leq d$.
- ▶ *Empirical moments*: Let $\hat{m}_k = \overline{X_n^k} = \frac{1}{n} \sum_{i=1}^n X_i^k$, $1 \leq k \leq d$.
- ▶ Let

$$\begin{aligned}\psi &: \Theta \rightarrow \mathbb{R}^d \\ \theta &\mapsto (m_1(\theta), \dots, m_d(\theta)).\end{aligned}$$

Method of moments (2)

Assume ψ is one to one:

$$\theta = \psi^{-1}(m_1(\theta), \dots, m_d(\theta)).$$

Definition

Moments estimator of θ :

$$\hat{\theta}_n^{MM} = \psi^{-1}(\hat{m}_1, \dots, \hat{m}_d),$$

provided it exists.

Method of moments (3)

Analysis of $\hat{\theta}_n^{MM}$

- ▶ Let $M(\theta) = (m_1(\theta), \dots, m_d(\theta))$;
- ▶ Let $\hat{M} = (\hat{m}_1, \dots, \hat{m}_d)$.
- ▶ Let $\Sigma(\theta) = \mathbb{V}_\theta(X_1, X_1^2, \dots, X_1^d)$ be the covariance matrix of the random vector $(X_1, X_1^2, \dots, X_1^d)$.
- ▶ Assume ψ^{-1} is continuously differentiable at $M(\theta)$.

Method of moments (4)

- ▶ LLN: $\hat{\theta}_n^{MM}$ is weakly/strongly consistent.
- ▶ CLT:

$$\sqrt{n} \left(\hat{M} - M(\theta) \right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \Sigma(\theta)) \quad (\text{w.r.t. } \mathbb{P}_\theta).$$

Hence, by the Delta method (see next slide):

Theorem

$$\sqrt{n} \left(\hat{\theta}_n^{MM} - \theta \right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \Gamma(\theta)) \quad (\text{w.r.t. } \mathbb{P}_\theta),$$

where $\Gamma(\theta) = \nabla(\psi^{-1})(M(\theta)) \Sigma(\theta) \nabla(\psi^{-1})(M(\theta))'$.

Multivariate Delta method

Let $(T_n)_{n \geq 1}$ sequence of random vectors in \mathbb{R}^p ($p \geq 1$) that satisfies

$$\sqrt{n}(T_n - \vartheta) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \Sigma),$$

for some $\vartheta \in \mathbb{R}^p$ and some symmetric positive semidefinite matrix $\Sigma \in \mathbb{R}^{p \times p}$.

Let $g : \mathbb{R}^p \rightarrow \mathbb{R}^k$ ($k \geq 1$) be continuously differentiable at ϑ . Then,

$$\sqrt{n}(g(T_n) - g(\vartheta)) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N}(0, \nabla g(\vartheta)' \Sigma \nabla g(\vartheta)),$$

where $\nabla g(\vartheta) = \left(\frac{\partial g_j}{\partial \theta_i} \right)_{1 \leq i \leq d, 1 \leq j \leq k} \in \mathbb{R}^{k \times d}$.

MLE vs. Moment estimator

- ▶ Comparison of the quadratic risks: In general, the MLE is more accurate.
- ▶ Computational issues: Sometimes, the MLE is intractable.

M-estimators (1)

Idea:

- ▶ Let X_1, \dots, X_n be i.i.d with some unknown distribution P in some space E ($E \subseteq \mathbb{R}^d$ for some $d \geq 1$).
- ▶ No statistical model needs to be assumed.
- ▶ Goal: estimate a parameter θ^* associated with P , e.g. its mean, variance, median, other quantiles, the true parameter in some statistical model...
- ▶ Find a function $\rho : E \times \Theta \rightarrow \mathbb{R}$, where Θ is the set of all possible values for the unknown θ^* , such that:

$$\mathcal{Q}(\theta) := \mathbb{E} [\rho(X_1, \theta)]$$

achieves its minimum only at $\theta = \theta^*$.

M-estimators (2)

- ▶ E.g., $\rho(x, \theta) = (x - \theta)^2$, $\rho(x, \theta) = |x - \theta|$, $\rho = -\ln L_1$, etc...
- ▶ Let $J(\theta) = -\mathbb{E} \left[\frac{\partial^2 \rho}{\partial \theta \partial \theta'}(X_1, \theta) \right] = -\frac{\partial^2 Q}{\partial \theta \partial \theta'}(\theta)$.
- ▶ Let $K(\theta) = \mathbb{V} \left[\frac{\partial \rho}{\partial \theta}(X_1, \theta) \right]$.
- ▶ Define $\hat{\theta}_n$ as a minimizer of:

$$Q_n(\theta) := \frac{1}{n} \sum_{i=1}^n \rho(X_i, \theta).$$

M-estimators (3)

Theorem

Let $\theta^* \in \Theta$ (the *true* parameter). Assume the following:

1. θ^* is not on the boundary of Θ ;
2. $J(\theta)$ is invertible in a neighborhood of θ^* ;
3. A few more technical conditions.

Then, $\hat{\theta}_n$ satisfies:

- $\hat{\theta}_n \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \theta^*$;
- $\sqrt{n} \left(\hat{\theta}_n - \theta^* \right) \xrightarrow[n \rightarrow \infty]{(d)} \mathcal{N} \left(0, J(\theta^*)^{-1} K(\theta^*) J(\theta^*)^{-1} \right)$.

M-estimators (4)

Example: Location parameter

If X_1, \dots, X_n are i.i.d. with density $f(\cdot - \theta)$, where:

- ▶ f is an unknown, positive, even function;
- ▶ θ is a real number of interest, a *location parameter*;

How to estimate θ ?

- ▶ M-estimators: empirical mean, empirical median, ...
- ▶ Compare their risks or asymptotic variances;
- ▶ The empirical median is more *robust*.