
Statistics for Applications

Chapter 3: Parameter Estimation



Likelihood, Discrete case (1)

Let
(
E ,F , (Pθ)θ∈Θ

)
be a statistical model associated with a

sample of i.i.d. r.v. X1, . . . ,Xn. Assume that E is discrete (i.e.,
finite or countable).

Definition

The likelihood of the model is the map Ln (or just L) defined as:

Ln : En ×Θ → R
(x1, . . . , xn, θ) 7→ Pθ[X1 = x1, . . . ,Xn = xn].



Likelihood, Discrete case (2)

Example 1 (Bernoulli trials): If X1, . . . ,Xn
iid∼ Ber(p) for some

p ∈ (0, 1):

I E = {0, 1};

I Θ = (0, 1);

I ∀(x1, . . . , xn) ∈ {0, 1}n, ∀p ∈ (0, 1),

L(x1, . . . , xn, p) =
n∏

i=1

Pp[Xi = xi ]

=
n∏

i=1

pxi (1− p)1−xi

= p
∑n

i=1 xi (1− p)n−
∑n

i=1 xi .



Likelihood, Discrete case (3)

Example 2 (Poisson model):

If X1, . . . ,Xn
iid∼ Poiss(λ) for some λ > 0:

I E = N;

I Θ = (0,∞);

I ∀(x1, . . . , xn) ∈ {0, 1}n, ∀λ > 0,

L(x1, . . . , xn, p) =
n∏

i=1

Pλ[Xi = xi ]

=
n∏

i=1

e−λ
λxi
xi !

= e−nλ
λ
∑n

i=1 xi

x1! . . . xn!
.



Likelihood, Continuous case (1)

Let
(
E ,F , (Pθ)θ∈Θ

)
be a statistical model associated with a

sample of i.i.d. r.v. X1, . . . ,Xn. Assume that all the Pθ have a
density fθ w.r.t. the Lebesgue measure.

Definition

The likelihood of the model is the map L defined as:

L : En ×Θ → R
(x1, . . . , xn, θ) 7→

∏n
i=1 fθ(xi ).



Likelihood, Continuous case (2)

Example 1 (Gaussian model): If X1, . . . ,Xn
iid∼ N (µ, σ2), for

some µ ∈ R, σ2 > 0:

I E = R;

I Θ = R× R∗+;

I ∀(x1, . . . , xn) ∈ {0, 1}n, ∀(µ, σ2) ∈ R× R∗+,

L(x1, . . . , xn, µ, σ
2) =

1

(
√

2πσ2)n
exp

(
− 1

2σ2

n∑
i=1

(xi − µ)2

)
.



Maximum likelihood estimator (1)

Let X1, . . . ,Xn be an i.i.d. sample associated with a statistical
model

(
E ,F , (Pθ)θ∈Θ

)
and let L be the corresponding likelihood.

Definition

The likelihood estimator of θ is defined as:

θ̂MLE
n = argmax

θ∈Θ
L(X1, . . . ,Xn, θ),

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact
that

θ̂MLE
n = argmax

θ∈Θ
ln L(X1, . . . ,Xn, θ).



Maximum likelihood estimator (2)

Examples

I Bernoulli trials: p̂MLE
n = X̄n.

I Poisson model: λ̂MLE
n = X̄n.

I Gaussian model:
(
µ̂n, σ̂

2
n

)
=
(
X̄n, Ŝn

)
.



Maximum likelihood estimator (3)

Definition: Fisher information

Define the log-likelihood for one observation as:

`(θ) = ln L1(X , θ), θ ∈ Θ.

Assume that ` is a.s. twice differentiable. Under some regularity
conditions, the Fisher information of the statistical model is
defined as:

I (θ) = Vθ (∇θ`(θ)) = −Eθ
[
∂2`

∂θ∂θ′
(θ)

]
.



Maximum likelihood estimator (4)

Theorem

Let θ∗ ∈ Θ (the true parameter). Assume the following:

1. The model is identified.

2. For all θ ∈ Θ, the support of Pθ does not depend on θ;

3. θ∗ is not on the boundary of Θ;

4. I (θ) is invertible in a neighborhood of θ∗;

5. A few more technical conditions.

Then, θ̂MLE
n satisfies:

I θ̂MLE
n

P−−−→
n→∞

θ∗ w.r.t. Pθ∗ ;

I
√
n
(
θ̂MLE
n − θ∗

)
(d)−−−→

n→∞
N
(
0, I (θ∗)−1

)
w.r.t. Pθ∗ .



Method of moments (1)

Let X1, . . . ,Xn be an i.i.d. sample associated with a statistical
model

(
E ,F , (Pθ)θ∈Θ

)
. Assume that Θ ⊆ Rd , for some d ≥ 1.

I Population moments: Let mk(θ) = Eθ[X k
1 ], 1 ≤ k ≤ d .

I Empirical moments: Let m̂k = X k
n =

1

n

n∑
i=1

X k
i , 1 ≤ k ≤ d .

I Let
ψ : Θ → Rd

θ 7→ (m1(θ), . . . ,md(θ)) .



Method of moments (2)

Assume ψ is one to one:

θ = ψ−1(m1(θ), . . . ,md(θ)).

Definition

Moments estimator of θ:

θ̂MM
n = ψ−1(m̂1, . . . , m̂d),

provided it exists.



Method of moments (3)

Analysis of θ̂MM
n

I Let M(θ) = (m1(θ), . . . ,md(θ));

I Let M̂ = (m̂1, . . . , m̂d).

I Let Σ(θ) = Vθ(X1,X
2
1 , . . . ,X

d
1 ) be the covariance matrix of

the random vector (X1,X
2
1 , . . . ,X

d
1 ).

I Assume ψ−1 is continuously differentiable at M(θ).



Method of moments (4)

I LLN: θ̂MM
n is weakly/strongly consistent.

I CLT:

√
n
(
M̂ −M(θ)

)
(d)−−−→

n→∞
N (0,Σ(θ)) (w.r.t. Pθ).

Hence, by the Delta method (see next slide):

Theorem

√
n
(
θ̂MM
n − θ

)
(d)−−−→

n→∞
N (0, Γ(θ)) (w.r.t. Pθ),

where Γ(θ) = ∇
(
ψ−1

)
(M(θ)) Σ(θ)∇

(
ψ−1

)
(M(θ))′.



Multivariate Delta method

Let (Tn)n≥1 sequence of random vectors in Rp (p ≥ 1) that
satisfies

√
n(Tn − ϑ)

(d)−−−→
n→∞

N (0,Σ),

for some ϑ ∈ Rp and some symmetric positive semidefinite matrix
Σ ∈ Rp×p.

Let g : Rp → Rk (k ≥ 1) be continuously differentiable at ϑ.
Then,

√
n (g(Tn)− g(ϑ))

(d)−−−→
n→∞

N (0,∇g(ϑ)′Σ∇g(ϑ)),

where ∇g(ϑ) =

(
∂gj
∂θi

)
1≤i≤d ,1≤j≤k

∈ Rk×d .



MLE vs. Moment estimator

I Comparison of the quadratic risks: In general, the MLE is
more accurate.

I Computational issues: Sometimes, the MLE is intractable.



M-estimators (1)

Idea:

I Let X1, . . . ,Xn be i.i.d with some unknown distribution P in
some space E (E ⊆ Rd for some d ≥ 1).

I No statistical model needs to be assumed.

I Goal: estimate a parameter θ∗ associated with P, e.g. its
mean, variance, median, other quantiles, the true parameter in
some statistical model...

I Find a function ρ : E ×Θ→ R, where Θ is the set of all
possible values for the unknown θ∗, such that:

Q(θ) := E [ρ(X1, θ)]

achieves its minimum only at θ = θ∗.



M-estimators (2)

I E.g., ρ(x , θ) = (x − θ)2, ρ(x , θ) = |x − θ|, ρ = − ln L1, etc...

I Let J(θ) = −E
[
∂2ρ

∂θ∂θ′
(X1, θ)

]
= − ∂2Q

∂θ∂θ′
(θ).

I Let K (θ) = V
[
∂ρ

∂θ
(X1, θ)

]
.

I Define θ̂n as a minimizer of:

Qn(θ) :=
1

n

n∑
i=1

ρ(Xi , θ).



M-estimators (3)

Theorem

Let θ∗ ∈ Θ (the true parameter). Assume the following:

1. θ∗ is not on the boundary of Θ;

2. J(θ) is invertible in a neighborhood of θ∗;

3. A few more technical conditions.

Then, θ̂n satisfies:

I θ̂n
P−−−→

n→∞
θ∗;

I
√
n
(
θ̂n − θ∗

)
(d)−−−→

n→∞
N
(
0, J(θ∗)−1K (θ∗)J(θ∗)−1

)
.



M-estimators (4)

Example: Location parameter

If X1, . . . ,Xn are i.i.d. with density f (· − θ), where:

I f is an unknown, positive, even function;

I θ is a real number of interest, a location parameter ;

How to estimate θ ?

I M-estimators: empirical mean, empirical median, ...

I Compare their risks or asymptotic variances;

I The empirical median is more robust.


