Statistics for Applications

Chapter 3: Parameter Estimation



Likelihood, Discrete case (1)

Let (E,F,(Pg)yeo) be a statistical model associated with a
sample of i.i.d. r.v. Xi,...,X,. Assume that E is discrete (i.e.,
finite or countable).

Definition
The likelihood of the model is the map L, (or just L) defined as:

L, : E"x© - R
(Xl,...,Xn,G) — Pg[Xlle,...,Xn:Xn].



Likelihood, Discrete case (2)
Example 1 (Bernoulli trials): If Xi,..., X, i Ber(p) for some
p < (0,1):
» E={0,1};
» ©=(0,1);

> V(x1,...,xp) € {0,1}", Vp e (0,1),
n
L(x1,...,%Xn, p) = HPP[X; = x|
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Likelihood, Discrete case (3)
Example 2 (Poisson model):
If Xy,..., Xy 2 Poiss(\) for some A > 0:
» E=N;
» © =(0,00);
» V(x1,...,xp) € {0,1}", YA >0,

L(X17 cee ;Xn;p) = H]P))\[XI = Xi]
i=1
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Likelihood, Continuous case (1)

Let (E,F,(Pg)yeo) be a statistical model associated with a
sample of i.i.d. r.v. Xi,...,X,. Assume that all the Py have a
density fy w.r.t. the Lebesgue measure.

Definition
The likelihood of the model is the map L defined as:

L E"x © - R
(X1, -y xn,0) = TIimq fo(xi)-



Likelihood, Continuous case (2)

Example 1 (Gaussian model): If X1, ..., X, % N(u, 02), for
some 1 € R, 0% > 0:

» FE=R;
» © =R xRY;
> V(x1,...,xn) € {0,1}", V(u,0?) € R x R%,

1 1 <
L(Xlw--,Xn,MaUz) = WGXP <_2a (xi — M)2> .
1



Maximum likelihood estimator (1)

Let Xi,...,X, be an i.i.d. sample associated with a statistical
model (E,F,(Pg)pce) and let L be the corresponding likelihood.

Definition
The likelihood estimator of 6 is defined as:

GA,')/’LE =argmax L(Xi,...,X,,0),
USS)

provided it exists.

Remark (log-likelihood estimator): In practice, we use the fact
that

HA,’Y’LE = argmax InL(Xy,...,Xs,0).
0c©



Maximum likelihood estimator (2)

Examples

» Bernoulli trials: pME = X,

» Poisson model: A\MLE — X

> Gaussian model: (fi,,62) = ()_(,,,§n>.



Maximum likelihood estimator (3)

Definition: Fisher information

Define the log-likelihood for one observation as:
00) =InLi(X,0), 6¢€6.

Assume that / is a.s. twice differentiable. Under some regularity
conditions, the Fisher information of the statistical model is
defined as:

2
1(6) = Vo (Vol(0)) = —Eg [aﬁjg,(e)] |



Maximum likelihood estimator (4)

Theorem

Let 6* € © (the true parameter). Assume the following:
1. The model is identified.
For all 8 € ©, the support of Py does not depend on ;
0* is not on the boundary of ©;
1(0) is invertible in a neighborhood of 6%;

AN

A few more technical conditions.

Then, OA,’,V’LE satisfies:

A P
> H,I)”LE — 0" w.r.t. Pys;
n—o00

> v/ (BME — ) DN (010 wert. Py,

n—oo



Method of moments (1)

Let Xi,...,X, be an i.i.d. sample associated with a statistical
model (E,}", (Pg)aee). Assume that © C RY, for some d > 1.

» Population moments: Let my(0) = Eg[X{], 1< k < d.

N
» Empirical moments: Let My = Xk == E XK 1<k<d.
n
i=1

> Let



Method of moments (2)

Assume 1) is one to one:

0= (m(6), ..., mg(0)).

Definition

Moments estimator of 0:
AMM N N
9,, :T,Z) (ml,...,md),

provided it exists.



Method of moments (3)

Analysis of 6"V

> Let M(0) = (m1(0),...,mq(0));
> Let M = (i, ..., Mg).

> Let (0) = Vo(X1, X2, ..., X{) be the covariance matrix of
the random vector (X1, XZ,..., X{).

» Assume ¢! is continuously differentiable at M(#).



Method of moments (4)

» LLN: GAQ/’M is weakly/strongly consistent.
» CLT:

Vi (11— M) DA (0,5(0)  (wort. Py).

n—oo

Hence, by the Delta method (see next slide):

Theorem

Vi (84 — ) D Ar(0.T(0)  (wrt. Py),

n—oo

where [(0) = V (1) (M(0)) Z(0)V (v~ 1) (M(8))".



Multivariate Delta method

Let (T»)n>1 sequence of random vectors in RP (p > 1) that
satisfies

Va(To —9) % N(0,%),

for some 9 € RP and some symmetric positive semidefinite matrix
Y € RP*P,

Let g : R? — R¥ (k > 1) be continuously differentiable at 1.
Then,

Vi (g(Ta) — g(9) =215 N (0, Vg(9) TV (0)),

Ogj

> E kad.
00 1<i<d,1<j<k

where Vg(v) = <



MLE vs. Moment estimator

» Comparison of the quadratic risks: In general, the MLE is
more accurate.

» Computational issues: Sometimes, the MLE is intractable.



M-estimators (1)

Idea:

» Let Xi,...,X, bei.id with some unknown distribution P in
some space E (E C R? for some d > 1).

» No statistical model needs to be assumed.

» Goal: estimate a parameter 6* associated with P, e.g. its
mean, variance, median, other quantiles, the true parameter in
some statistical model...

» Find a function p: E x © — R, where © is the set of all
possible values for the unknown 6*, such that:

Q(0) := E[p(X1,0)]

achieves its minimum only at 6 = 6*.



M-estimators (2)

» Eg., p(x,0) = (x —0)? p(x,0)=|x—0|, p=—InlLy, etc...
9%p 0’Q
> Let J(/) = —E {8089’()(1’0)} = —mw)-

Let K(0) =V [gg(xl, 9)} .

v

Define 6,, as a minimizer of:

v

0u() = = 3 p(X:.6).
i=1



M-estimators (3)

Theorem

Let 0* € © (the true parameter). Assume the following:
1. * is not on the boundary of ©;
2. J(0) is invertible in a neighborhood of 6*;

3. A few more technical conditions.

Then, HA,, satisfies:

AP
> 0, —— 0%;
n—oo

> v/ (0 - 07) L (0, J(07) K (0 J(67) ).



M-estimators (4)

Example: Location parameter

If X1,...,X, are i.i.d. with density (- — ), where:
» f is an unknown, positive, even function;

> 0 is a real number of interest, a location parameter;
How to estimate 6 7
» M-estimators: empirical mean, empirical median, ...

» Compare their risks or asymptotic variances;

» The empirical median is more robust.



