
Statistics for Applications

Chapter 2: Parametric Inference



Statistical model (1)

Formal definition

Let the observed outcome of a statistical experiment be a sample
X1, . . . ,Xn of n i.i.d. random variables in some measurable space
(E ,F) (usually E ⊆ R) and denote by P their common
distribution. A statistical model associated to that statistical
experiment is a triplet

(E ,F , (Pθ)θ∈Θ) ,

where:

I (E ,F) is the measurable space of the observations;

I (Pθ)θ∈Θ is a family of probability measures on (E ,F);

I Θ is any set, called parameter set.



Statistical model (2)

I Usually, we will assume that the statistical model is well
specified, i.e., defined such that P = Pθ, for some θ ∈ Θ.

I This particular θ is called the true parameter, and is unknown:
The aim of the statistical experiment is to estimate θ.

I For now, we will always assume that Θ ⊆ Rd for some d ≥ 1:
The model is called parametric.



Statistical model (3)

Examples

1. For n Bernoulli trials:(
{0, 1},P ({0, 1}) , (Ber(p))p∈(0,1)

)
.

2. If X1, . . . ,Xn
iid∼ E(λ), for some unknown λ > 0:(

R∗+,B
(
R∗+
)
, (Exp(λ))λ>0

)
.

3. If X1, . . . ,Xn
iid∼ Poiss(λ), for some unknown λ > 0:(

N,P (N) , (Poiss(λ))λ>0

)
.

4. If X1, . . . ,Xn
iid∼ N (µ, σ2), for some unknown µ ∈ R and

σ2 > 0: (
R,B (R) ,

(
N (µ, σ2)

)
(µ,σ2)∈R×R∗+

)
.



Identification

The parameter θ is called identified iff the map θ ∈ Θ 7→ Pθ is
injective, i.e.,

θ 6= θ′ ⇒ Pθ 6= Pθ′ .

Examples

1. In all four previous examples, the parameter was identified.

2. If Xi = 1Ui≥0, where U1, . . . ,Un
iid∼ N (µ, σ2), for some

unknown µ ∈ R and σ2 > 0, are unobserved: µ and σ2 are
not identified (but µ/σ is).



Parameter estimation (1)

Idea: Given an observed sample X1, . . . ,Xn and a statistical model
(E ,F , (Pθ)θ∈Θ), one wants to estimate the parameter θ.

Definitions

I Statistic : Any measurable function of the sample, e.g.,
X̄n,max

i
Xi , X1 + log(1 + |Xn|), sample variance, etc...

I Estimator of θ: Any statistic whose expression does not
depend on θ.

I An estimator θ̂n of θ is weakly (resp. strongly) consistent iff

θ̂n
P (resp. a.s.)
−−−−−−−−−→

n→∞
θ (w.r.t. Pθ).



Parameter estimation (2)

I Bias of an estimator θ̂n of θ:

E
[
θ̂n

]
− θ.

I Risk (or quadratic risk) of an estimator θ̂n:

E
[
|θ̂n − θ|2

]
.

Remark: If Θ ⊆ R,

”Quadratic risk = bias2 + variance”.



Confidence intervals (1)

Let (E ,F , (Pθ)θ∈Θ) be a statistical model based on observations
X1, . . . ,Xn, and assume Θ ⊆ R.

Definition
Let α ∈ (0, 1).

I Confidence interval (C.I.) of level 1− α for θ: Any random
(i.e., depending on X1, . . . ,Xn) interval I whose boundaries
do not depend on θ and such that:

Pθ [I 3 θ] ≥ 1− α, ∀θ ∈ Θ.

I C.I. of asymptotic level 1− α for θ: Any random interval I
whose boundaries do not depend on θ and such that:

lim
n→∞

Pθ [I 3 θ] ≥ 1− α, ∀θ ∈ Θ.



Confidence intervals (2)

Example: Let X1, . . . ,Xn
iid∼ Ber(p), for some unknown p ∈ (0, 1).

I LLN: The sample average X̄n is a strongly consistent
estimator of p.

I Let tα be the (1− α

2
)-quantile of N (0, 1) and

I =

[
X̄n −

tα
√
p(1− p)√

n
, X̄n +

tα
√

p(1− p)√
n

]
.

I CLT: lim
n→∞

Pp [I 3 p] = 1− α, ∀p ∈ (0, 1).

I Problem: I depends on p !



Confidence intervals (3)

Two solutions:

I Replace p(1− p) with 1/4 in I (since p(1− p) ≤ 1/4).

I Replace p with X̄n in I and use Slutsky’s theorem.


