

Statistics for Applications

Chapter 2: Parametric Inference

Statistical model (1)

Formal definition

Let the observed outcome of a statistical experiment be a sample X_1, \dots, X_n of n i.i.d. random variables in some measurable space (E, \mathcal{F}) (usually $E \subseteq \mathbb{R}$) and denote by \mathbb{P} their common distribution. A *statistical model* associated to that statistical experiment is a triplet

$$(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta}),$$

where:

- ▶ (E, \mathcal{F}) is the measurable space of the observations;
- ▶ $(\mathbb{P}_\theta)_{\theta \in \Theta}$ is a family of probability measures on (E, \mathcal{F}) ;
- ▶ Θ is any set, called *parameter set*.

Statistical model (2)

- ▶ Usually, we will assume that the statistical model is *well specified*, i.e., defined such that $\mathbb{P} = \mathbb{P}_\theta$, for some $\theta \in \Theta$.
- ▶ This particular θ is called the true parameter, and is unknown: The aim of the statistical experiment is to *estimate* θ .
- ▶ For now, we will always assume that $\Theta \subseteq \mathbb{R}^d$ for some $d \geq 1$: The model is called *parametric*.

Statistical model (3)

Examples

1. For n Bernoulli trials:

$$\left(\{0, 1\}, \mathcal{P}(\{0, 1\}), (\text{Ber}(p))_{p \in (0, 1)} \right).$$

2. If $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{E}(\lambda)$, for some unknown $\lambda > 0$:

$$\left(\mathbb{R}_+^*, \mathcal{B}(\mathbb{R}_+^*), (\mathcal{Exp}(\lambda))_{\lambda > 0} \right).$$

3. If $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{Poiss}(\lambda)$, for some unknown $\lambda > 0$:

$$\left(\mathbb{N}, \mathcal{P}(\mathbb{N}), (\mathcal{Poiss}(\lambda))_{\lambda > 0} \right).$$

4. If $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for some unknown $\mu \in \mathbb{R}$ and $\sigma^2 > 0$:

$$\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), (\mathcal{N}(\mu, \sigma^2))_{(\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^*} \right).$$

Identification

The parameter θ is called *identified* iff the map $\theta \in \Theta \mapsto \mathbb{P}_\theta$ is injective, i.e.,

$$\theta \neq \theta' \Rightarrow \mathbb{P}_\theta \neq \mathbb{P}_{\theta'}.$$

Examples

1. In all four previous examples, the parameter was identified.
2. If $X_i = \mathbb{1}_{U_i \geq 0}$, where $U_1, \dots, U_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$, for some unknown $\mu \in \mathbb{R}$ and $\sigma^2 > 0$, are unobserved: μ and σ^2 are not identified (but μ/σ is).

Parameter estimation (1)

Idea: Given an observed sample X_1, \dots, X_n and a statistical model $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$, one wants to *estimate* the parameter θ .

Definitions

- ▶ *Statistic*: Any measurable function of the sample, e.g., $\bar{X}_n, \max_i X_i, X_1 + \log(1 + |X_n|)$, sample variance, etc...
- ▶ *Estimator* of θ : Any statistic whose expression does not depend on θ .
- ▶ An estimator $\hat{\theta}_n$ of θ is *weakly* (resp. *strongly*) *consistent* iff

$$\hat{\theta}_n \xrightarrow[n \rightarrow \infty]{\mathbb{P} \text{ (resp. a.s.)}} \theta \quad (\text{w.r.t. } \mathbb{P}_\theta).$$

Parameter estimation (2)

- ▶ *Bias* of an estimator $\hat{\theta}_n$ of θ :

$$\mathbb{E} \left[\hat{\theta}_n \right] - \theta.$$

- ▶ *Risk* (or *quadratic risk*) of an estimator $\hat{\theta}_n$:

$$\mathbb{E} \left[|\hat{\theta}_n - \theta|^2 \right].$$

Remark: If $\Theta \subseteq \mathbb{R}$,

"Quadratic risk = bias² + variance".

Confidence intervals (1)

Let $(E, \mathcal{F}, (\mathbb{P}_\theta)_{\theta \in \Theta})$ be a statistical model based on observations X_1, \dots, X_n , and assume $\Theta \subseteq \mathbb{R}$.

Definition

Let $\alpha \in (0, 1)$.

- ▶ *Confidence interval (C.I.) of level $1 - \alpha$ for θ :* Any random (i.e., depending on X_1, \dots, X_n) interval \mathcal{I} whose boundaries do not depend on θ and such that:

$$\mathbb{P}_\theta [\mathcal{I} \ni \theta] \geq 1 - \alpha, \quad \forall \theta \in \Theta.$$

- ▶ *C.I. of asymptotic level $1 - \alpha$ for θ :* Any random interval \mathcal{I} whose boundaries do not depend on θ and such that:

$$\lim_{n \rightarrow \infty} \mathbb{P}_\theta [\mathcal{I} \ni \theta] \geq 1 - \alpha, \quad \forall \theta \in \Theta.$$

Confidence intervals (2)

Example: Let $X_1, \dots, X_n \stackrel{iid}{\sim} \text{Ber}(p)$, for some unknown $p \in (0, 1)$.

- ▶ LLN: The sample average \bar{X}_n is a strongly consistent estimator of p .
- ▶ Let t_α be the $(1 - \frac{\alpha}{2})$ -quantile of $\mathcal{N}(0, 1)$ and

$$\mathcal{I} = \left[\bar{X}_n - \frac{t_\alpha \sqrt{p(1-p)}}{\sqrt{n}}, \bar{X}_n + \frac{t_\alpha \sqrt{p(1-p)}}{\sqrt{n}} \right].$$

- ▶ CLT: $\lim_{n \rightarrow \infty} \mathbb{P}_p [\mathcal{I} \ni p] = 1 - \alpha, \quad \forall p \in (0, 1)$.
- ▶ Problem: \mathcal{I} depends on p !

Confidence intervals (3)

Two solutions:

- ▶ Replace $p(1 - p)$ with $1/4$ in \mathcal{I} (since $p(1 - p) \leq 1/4$).
- ▶ Replace p with \bar{X}_n in \mathcal{I} and use Slutsky's theorem.