Statistics for Applications

Chapter 10: Principal Component Analysis



Multivariate statistics and review of linear algebra (1)

» Let X be a d-dimensional random vector and Xy,...,X, be n
independent copies of X.

> Write X = (517 s 7£d)/ and
Xi=(Xi1,..., Xiq), i=1,....n

» Denote by X the random n x d matrix



Multivariate statistics and review of linear algebra (2)

v

Assume that E[||X]|3] < .

v

Mean of X:
E[X] = (E[¢1], - - . E[¢d]) -

Covariance matrix of X: the matrix ¥ = (0} «);j k=1,....d, where

v

ojk = cov(&, &k)-

v

It is easy to see that

¥ = E[XX] - EX|E[X] = E|(X — E[X])(X — E[X])'|.



Multivariate statistics and review of linear algebra (3)

» Empirical mean of Xq,..., X,:

,172_: = (X, Xq)"

» Empirical covariance of Xq,..., X,: the matrix
S = (Sjk)j k=1,....d Where s; ; is the empirical covariance of

theX,-,J-, X,"k, i=1...,n

> It is easy to see that

n

1 |
:;Zx,x;_xx’:;Z(x,—x) (X; = X)".

i=1 i=1



Multivariate statistics and review of linear algebra (4)
_ 1, ,
» Note that X = =X'1, where 1 = (1,...,1)".
n
» Note also that
1 1 1
S=-XX- —2X]l]l’X = “X'HX,
n n n
where H = I, — 111",

» H is an orthogonal projector: H> = H, H' = H. (on what
subspace 7)

» IfueRY,

» u’Xu is the variance of u’X;

» u'Su is the sample variance of u'Xy,...,u’X,.



Multivariate statistics and review of linear algebra (5)

» In particular, u’Su measures how spread (i.e., diverse) the
points are in direction u.

» If WSu =0, then all X;'s are in an affine subspace orthogonal
to u.

» If UXu =0, then X is almost surely in an affine subspace
orthogonal to u.

» If u’Su is large with ||u||2 = 1, then the direction of u explains
well the spread (i.e., diversity) of the sample.



Multivariate statistics and review of linear algebra (6)
> In particular, ¥ and S are symmetric, positive semi-definite.

» Any real symmetric matrix A € R¥*9 has the decomposition
A= PDP',
where:
» Pisad x d orthogonal matrix, i.e., PP’ = P'P = Ig;

» D is diagonal.

» The diagonal elements of D are the eigenvalues of A and the
columns of P are the corresponding eigenvectors of A.

> A is semi-definite positive iff all its eigenvalues are
nonnegative.



Principal Component Analysis: Heuristics (1)

» The sample X1, ..., X, makes a cloud of points in RY.

> In practice, d is large. If d > 3, it becomes impossible to
represent the cloud on a picture.

» Question: s it possible to project the cloud onto a linear
subspace of dimension d’ < d by keeping as much information
as possible 7

» Answer: PCA does this by keeping as much covariance
structure as possible by keeping orthogonal directions that
discriminate well the points of the cloud.



Principal Component Analysis: Heuristics (2)

> Idea: Write S = PDP’, where

> P =(vi,...,vq) is an orthogonal matrix, i.e.,
Ivjlla = 1,vjvx = 0,V) # k.

AL
» 0

» D= Jwith A\; > ... > Ay > 0.

0

Ad

» Note that D is the empirical covariance matrix of the P'X;'s,
i=1,...,n.

» In particular, A1 is the empirical variance of the v’1X,-'s; Ao is
the empirical variance of the v5X;'s, etc...



Principal Component Analysis: Heuristics (3)

» So, each Aj measures the spread of the cloud in the direction
Vi
j

» In particular, vy is the direction of maximal spread.

» Indeed, v; maximizes the empirical covariance of
a’Xy,...,a'’X, over a € RY such that |jal|, = 1.

» Proof: For any unit vector a, show that
a'Ya = (P'a)' D (P'a) < A1,

with equality if @ = v1.



Principal Component Analysis: Main principle

> l|dea of the PCA: Find the collection of orthogonal directions
in which the cloud is much spread out.

Theorem
vi € argmax u’Su,
[Jull=1

vo € argmax u'Su,
[Jul|l=1,uLlvq

vy € argmax u'Su.
lul|=1ulv;,j=1,...,d-1

Hence, the k orthogonal directions in which the cloud is the
most spread out correspond exactly to the eigenvectors
associated with the k largest values of S.




Principal Component Analysis: Algorithm (1)

1. Input: Xy,...,X,: cloud of n points in dimension d.
2. Step 1: Compute the empirical covariance matrix.
3. Step 2: Compute the decomposition S = PDP’, where

D = Diag()\l,... ,)\d), with Ay > X\ > ... > Ay and

P = (v1,...,vq) is an orthogonal matrix.
4. Step 3: Choose k < d and set Py = (v1,...,vi) € RI¥K,
5. Output: Y1,...,Y,, where

Yi=PX;cRF i=1...,n

Question: How to choose k ?



Principal Component Analysis: Algorithm (2)

Question: How to choose k ?
» Experimental rule: Take k where there is an inflexion point in
the sequence A1,..., Ag.
» Define a criterion: Take k such that

A+ Ak S1-a,
A+ ...+ Ay

for some a € (0, 1) that determines the approximation error
that the practitioner wants to achieve.

» Remark: A1 4 ...+ A is called the variance explained by the
PCA and A1 + ...+ Ag = Tr(S) is the total variance.

» Data visualization: Take kK = 2 or 3.



Example: Expression of 500,000 genes among 1400

Europeans
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Principal Component Analysis - Beyond practice (1)

>

PCA is an algorithm that reduces the dimension of a cloud of
points and keeps its covariance structure as much as possible.

In practice this algorithm is used for clouds of points that are
not necessarily random.

In statistics, PCA can be used for estimation.

If X1,...,X, are i.i.d. random vectors in RY, how to estimate
their population covariance matrix ¥ 7

If n >> d, then the empirical covariance matrix S is a
consistent estimator.

In many applications, n << d (e.g., gene expression).

Theorem: rank(S) < n—1.



Principal Component Analysis - Beyond practice (2)

» It may be known beforehand that ¥ has low rank.

» Then, run PCA on S: Write S =~ S/, where

5/

A1

A2

0

Ak

0

0

P

» S" will be a better estimator of S under the low-rank
assumption.

> A theoretical analysis would lead to an optimal choice of the
tuning parameter k.



