

Statistics for Applications

Chapter 10: Principal Component Analysis

Multivariate statistics and review of linear algebra (1)

- ▶ Let \mathbf{X} be a d -dimensional random vector and $\mathbf{X}_1, \dots, \mathbf{X}_n$ be n independent copies of \mathbf{X} .
- ▶ Write $\mathbf{X} = (\xi_1, \dots, \xi_d)'$ and

$$\mathbf{X}_i = (X_{i,1}, \dots, X_{i,d})', \quad i = 1, \dots, n.$$

- ▶ Denote by \mathbb{X} the random $n \times d$ matrix

$$\mathbb{X} = \begin{pmatrix} \cdots & \mathbf{X}'_1 & \cdots \\ & \vdots & \\ \cdots & \mathbf{X}'_n & \cdots \end{pmatrix}.$$

Multivariate statistics and review of linear algebra (2)

- ▶ Assume that $\mathbb{E}[\|\mathbf{X}\|_2^2] < \infty$.

- ▶ Mean of \mathbf{X} :

$$\mathbb{E}[\mathbf{X}] = (\mathbb{E}[\xi_1], \dots, \mathbb{E}[\xi_d])'$$

- ▶ Covariance matrix of \mathbf{X} : the matrix $\Sigma = (\sigma_{j,k})_{j,k=1,\dots,d}$, where

$$\sigma_{j,k} = \text{cov}(\xi_j, \xi_k).$$

- ▶ It is easy to see that

$$\Sigma = \mathbb{E}[\mathbf{X}\mathbf{X}'] - \mathbb{E}[\mathbf{X}]\mathbb{E}[\mathbf{X}]' = \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])'].$$

Multivariate statistics and review of linear algebra (3)

- ▶ Empirical mean of $\mathbf{X}_1, \dots, \mathbf{X}_n$:

$$\bar{\mathbf{X}} = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i = (\bar{X}_1, \dots, \bar{X}_d)'$$

- ▶ Empirical covariance of $\mathbf{X}_1, \dots, \mathbf{X}_n$: the matrix $S = (s_{j,k})_{j,k=1,\dots,d}$ where $s_{j,k}$ is the empirical covariance of the $X_{i,j}$, $X_{i,k}$, $i = 1 \dots, n$.
- ▶ It is easy to see that

$$S = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i \mathbf{X}_i' - \bar{\mathbf{X}} \bar{\mathbf{X}}' = \frac{1}{n} \sum_{i=1}^n (\mathbf{X}_i - \bar{\mathbf{X}}) (\mathbf{X}_i - \bar{\mathbf{X}})'$$

Multivariate statistics and review of linear algebra (4)

- ▶ Note that $\bar{\mathbf{X}} = \frac{1}{n} \mathbb{X}' \mathbf{1}$, where $\mathbf{1} = (1, \dots, 1)'$.
- ▶ Note also that

$$S = \frac{1}{n} \mathbb{X}' \mathbb{X} - \frac{1}{n^2} \mathbb{X} \mathbf{1} \mathbf{1}' \mathbb{X} = \frac{1}{n} \mathbb{X}' H \mathbb{X},$$

where $H = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}'$.

- ▶ H is an orthogonal projector: $H^2 = H, H' = H$. (on what subspace?)
- ▶ If $\mathbf{u} \in \mathbb{R}^d$,
 - ▶ $\mathbf{u}' \Sigma \mathbf{u}$ is the variance of $\mathbf{u}' \mathbf{X}$;
 - ▶ $\mathbf{u}' S \mathbf{u}$ is the sample variance of $\mathbf{u}' \mathbf{X}_1, \dots, \mathbf{u}' \mathbf{X}_n$.

Multivariate statistics and review of linear algebra (5)

- ▶ In particular, $\mathbf{u}'S\mathbf{u}$ measures how spread (i.e., diverse) the points are in direction \mathbf{u} .
- ▶ If $\mathbf{u}'S\mathbf{u} = 0$, then all \mathbf{X}_i 's are in an affine subspace orthogonal to \mathbf{u} .
- ▶ If $\mathbf{u}'\Sigma\mathbf{u} = 0$, then \mathbf{X} is almost surely in an affine subspace orthogonal to \mathbf{u} .
- ▶ If $\mathbf{u}'S\mathbf{u}$ is large with $\|\mathbf{u}\|_2 = 1$, then the direction of \mathbf{u} explains well the spread (i.e., diversity) of the sample.

Multivariate statistics and review of linear algebra (6)

- ▶ In particular, Σ and S are symmetric, positive semi-definite.
- ▶ Any real symmetric matrix $A \in \mathbb{R}^{d \times d}$ has the decomposition

$$A = PDP',$$

where:

- ▶ P is a $d \times d$ orthogonal matrix, i.e., $PP' = P'P = I_d$;
- ▶ D is diagonal.
- ▶ The diagonal elements of D are the *eigenvalues* of A and the columns of P are the corresponding *eigenvectors* of A .
- ▶ A is semi-definite positive iff all its eigenvalues are nonnegative.

Principal Component Analysis: Heuristics (1)

- ▶ The sample $\mathbf{X}_1, \dots, \mathbf{X}_n$ makes a cloud of points in \mathbb{R}^d .
- ▶ In practice, d is large. If $d > 3$, it becomes impossible to represent the cloud on a picture.
- ▶ **Question:** Is it possible to project the cloud onto a linear subspace of dimension $d' < d$ by keeping as much information as possible ?
- ▶ **Answer:** PCA does this by keeping as much covariance structure as possible by keeping orthogonal directions that discriminate well the points of the cloud.

Principal Component Analysis: Heuristics (2)

- ▶ Idea: Write $S = PDP'$, where
 - ▶ $P = (\mathbf{v}_1, \dots, \mathbf{v}_d)$ is an orthogonal matrix, i.e., $\|\mathbf{v}_j\|_2 = 1, \mathbf{v}_j' \mathbf{v}_k = 0, \forall j \neq k$.

- ▶ $D = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \ddots & & \lambda_d \end{pmatrix}$, with $\lambda_1 \geq \dots \geq \lambda_d \geq 0$.

- ▶ Note that D is the empirical covariance matrix of the $P'\mathbf{X}_i$'s, $i = 1, \dots, n$.
- ▶ In particular, λ_1 is the empirical variance of the $\mathbf{v}_1' \mathbf{X}_i$'s; λ_2 is the empirical variance of the $\mathbf{v}_2' \mathbf{X}_i$'s, etc...

Principal Component Analysis: Heuristics (3)

- ▶ So, each λ_j measures the spread of the cloud in the direction \mathbf{v}_j .
- ▶ In particular, \mathbf{v}_1 is the direction of maximal spread.
- ▶ Indeed, \mathbf{v}_1 maximizes the empirical covariance of $\mathbf{a}'\mathbf{X}_1, \dots, \mathbf{a}'\mathbf{X}_n$ over $\mathbf{a} \in \mathbb{R}^d$ such that $\|\mathbf{a}\|_2 = 1$.
- ▶ *Proof:* For any unit vector \mathbf{a} , show that

$$\mathbf{a}'\Sigma\mathbf{a} = (P'\mathbf{a})' D (P'\mathbf{a}) \leq \lambda_1,$$

with equality if $\mathbf{a} = \mathbf{v}_1$.

Principal Component Analysis: Main principle

- ▶ Idea of the PCA: Find the collection of orthogonal directions in which the cloud is much spread out.

Theorem

$$\mathbf{v}_1 \in \underset{\|\mathbf{u}\|=1}{\operatorname{argmax}} \mathbf{u}' S \mathbf{u},$$

$$\mathbf{v}_2 \in \underset{\|\mathbf{u}\|=1, \mathbf{u} \perp \mathbf{v}_1}{\operatorname{argmax}} \mathbf{u}' S \mathbf{u},$$

...

$$\mathbf{v}_d \in \underset{\|\mathbf{u}\|=1, \mathbf{u} \perp \mathbf{v}_j, j=1, \dots, d-1}{\operatorname{argmax}} \mathbf{u}' S \mathbf{u}.$$

Hence, the k orthogonal directions in which the cloud is the most spread out correspond exactly to the eigenvectors associated with the k largest values of S .

Principal Component Analysis: Algorithm (1)

1. Input: $\mathbf{X}_1, \dots, \mathbf{X}_n$: cloud of n points in dimension d .
2. Step 1: Compute the empirical covariance matrix.
3. Step 2: Compute the decomposition $S = PDP'$, where $D = \text{Diag}(\lambda_1, \dots, \lambda_d)$, with $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_d$ and $P = (\mathbf{v}_1, \dots, \mathbf{v}_d)$ is an orthogonal matrix.
4. Step 3: Choose $k < d$ and set $P_k = (\mathbf{v}_1, \dots, \mathbf{v}_k) \in \mathbb{R}^{d \times k}$.
5. Output: $\mathbf{Y}_1, \dots, \mathbf{Y}_n$, where

$$\mathbf{Y}_i = P'_k \mathbf{X}_i \in \mathbb{R}^k, \quad i = 1, \dots, n.$$

Question: How to choose k ?

Principal Component Analysis: Algorithm (2)

Question: How to choose k ?

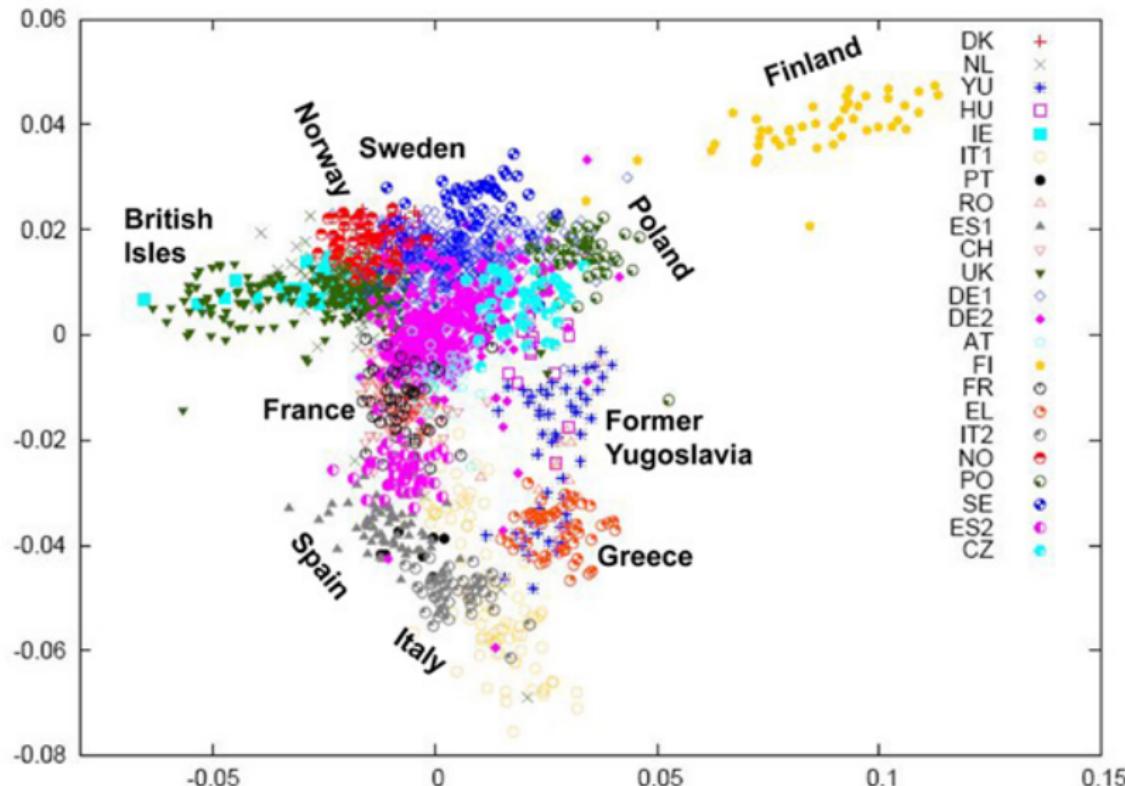
- ▶ Experimental rule: Take k where there is an inflexion point in the sequence $\lambda_1, \dots, \lambda_d$.
- ▶ Define a criterion: Take k such that

$$\frac{\lambda_1 + \dots + \lambda_k}{\lambda_1 + \dots + \lambda_d} \geq 1 - \alpha,$$

for some $\alpha \in (0, 1)$ that determines the approximation error that the practitioner wants to achieve.

- ▶ Remark: $\lambda_1 + \dots + \lambda_k$ is called *the variance explained by the PCA* and $\lambda_1 + \dots + \lambda_d = \text{Tr}(S)$ is *the total variance*.
- ▶ Data visualization: Take $k = 2$ or 3 .

Example: Expression of 500,000 genes among 1400 Europeans



Principal Component Analysis - Beyond practice (1)

- ▶ PCA is an algorithm that reduces the dimension of a cloud of points and keeps its covariance structure as much as possible.
- ▶ In practice this algorithm is used for clouds of points that are not necessarily random.
- ▶ In statistics, PCA can be used for estimation.
- ▶ If $\mathbf{X}_1, \dots, \mathbf{X}_n$ are i.i.d. random vectors in \mathbb{R}^d , how to estimate their population covariance matrix Σ ?
- ▶ If $n \gg d$, then the empirical covariance matrix S is a consistent estimator.
- ▶ In many applications, $n \ll d$ (e.g., gene expression).
- ▶ **Theorem:** $\text{rank}(S) \leq n - 1$.

Principal Component Analysis - Beyond practice (2)

- ▶ It may be known beforehand that Σ has low rank.
- ▶ Then, run PCA on S : Write $S \approx S'$, where

$$S' = P \begin{pmatrix} \lambda_1 & & & & 0 & & \\ & \lambda_2 & & & & & \\ & & \ddots & & & & \\ & & & \lambda_k & & & \\ 0 & & & & 0 & & \\ & & & & & \ddots & \\ & & & & & & 0 \end{pmatrix} P'.$$

- ▶ S' will be a better estimator of S under the low-rank assumption.
- ▶ A theoretical analysis would lead to an optimal choice of the tuning parameter k .