
Statistics for Applications

Chapter 10: Principal Component Analysis



Multivariate statistics and review of linear algebra (1)

I Let X be a d-dimensional random vector and X1, . . . ,Xn be n
independent copies of X.

I Write X = (ξ1, . . . , ξd)′ and

Xi = (Xi ,1, . . . ,Xi ,d)′, i = 1, . . . , n.

I Denote by X the random n × d matrix

X =

 · · · X′1 · · ·
...

· · · X′n · · ·

 .



Multivariate statistics and review of linear algebra (2)

I Assume that E[‖X‖22] <∞.

I Mean of X:
E[X] = (E[ξ1], . . . ,E[ξd ])′ .

I Covariance matrix of X: the matrix Σ = (σj ,k)j ,k=1,...,d , where

σj ,k = cov(ξj , ξk).

I It is easy to see that

Σ = E[XX′]− E[X]E[X]′ = E
[
(X− E[X])(X− E[X])′

]
.



Multivariate statistics and review of linear algebra (3)

I Empirical mean of X1, . . . ,Xn:

X̄ =
1

n

n∑
i=1

Xi =
(
X̄1, . . . , X̄d

)′
.

I Empirical covariance of X1, . . . ,Xn: the matrix
S = (sj ,k)j ,k=1,...,d where sj ,k is the empirical covariance of
the Xi ,j , Xi ,k , i = 1 . . . , n.

I It is easy to see that

S =
1

n

n∑
i=1

XiX
′
i − X̄X̄′ =

1

n

n∑
i=1

(
Xi − X̄

) (
Xi − X̄

)′
.



Multivariate statistics and review of linear algebra (4)

I Note that X̄ =
1

n
X′1, where 1 = (1, . . . , 1)′.

I Note also that

S =
1

n
X′X− 1

n2
X11′X =

1

n
X′HX,

where H = In − 1
n11

′.

I H is an orthogonal projector: H2 = H,H ′ = H. (on what
subspace ?)

I If u ∈ Rd ,

I u′Σu is the variance of u′X;

I u′Su is the sample variance of u′X1, . . . ,u′Xn.



Multivariate statistics and review of linear algebra (5)

I In particular, u′Su measures how spread (i.e., diverse) the
points are in direction u.

I If u′Su = 0, then all Xi ’s are in an affine subspace orthogonal
to u.

I If u′Σu = 0, then X is almost surely in an affine subspace
orthogonal to u.

I If u′Su is large with ‖u‖2 = 1, then the direction of u explains
well the spread (i.e., diversity) of the sample.



Multivariate statistics and review of linear algebra (6)

I In particular, Σ and S are symmetric, positive semi-definite.

I Any real symmetric matrix A ∈ Rd×d has the decomposition

A = PDP ′,

where:

I P is a d × d orthogonal matrix, i.e., PP ′ = P ′P = Id ;

I D is diagonal.

I The diagonal elements of D are the eigenvalues of A and the
columns of P are the corresponding eigenvectors of A.

I A is semi-definite positive iff all its eigenvalues are
nonnegative.



Principal Component Analysis: Heuristics (1)

I The sample X1, . . . ,Xn makes a cloud of points in Rd .

I In practice, d is large. If d > 3, it becomes impossible to
represent the cloud on a picture.

I Question: Is it possible to project the cloud onto a linear
subspace of dimension d ′ < d by keeping as much information
as possible ?

I Answer: PCA does this by keeping as much covariance
structure as possible by keeping orthogonal directions that
discriminate well the points of the cloud.



Principal Component Analysis: Heuristics (2)

I Idea: Write S = PDP ′, where

I P = (v1, . . . , vd) is an orthogonal matrix, i.e.,
‖vj‖2 = 1, v′jvk = 0,∀j 6= k .

I D =



λ1

λ2 0
. . .

0 . . .

λd


, with λ1 ≥ . . . ≥ λd ≥ 0.

I Note that D is the empirical covariance matrix of the P ′Xi ’s,
i = 1, . . . , n.

I In particular, λ1 is the empirical variance of the v′1Xi ’s; λ2 is
the empirical variance of the v′2Xi ’s, etc...



Principal Component Analysis: Heuristics (3)

I So, each λj measures the spread of the cloud in the direction
vj .

I In particular, v1 is the direction of maximal spread.

I Indeed, v1 maximizes the empirical covariance of
a′X1, . . . , a′Xn over a ∈ Rd such that ‖a‖2 = 1.

I Proof: For any unit vector a, show that

a′Σa =
(
P ′a
)′
D
(
P ′a
)
≤ λ1,

with equality if a = v1.



Principal Component Analysis: Main principle
I Idea of the PCA: Find the collection of orthogonal directions

in which the cloud is much spread out.

Theorem

v1 ∈ argmax
‖u‖=1

u′Su,

v2 ∈ argmax
‖u‖=1,u⊥v1

u′Su,

· · ·

vd ∈ argmax
‖u‖=1,u⊥vj ,j=1,...,d−1

u′Su.

Hence, the k orthogonal directions in which the cloud is the
most spread out correspond exactly to the eigenvectors
associated with the k largest values of S .



Principal Component Analysis: Algorithm (1)

1. Input: X1, . . . ,Xn: cloud of n points in dimension d .

2. Step 1: Compute the empirical covariance matrix.

3. Step 2: Compute the decomposition S = PDP ′, where
D = Diag(λ1, . . . , λd), with λ1 ≥ λ2 ≥ . . . ≥ λd and
P = (v1, . . . , vd) is an orthogonal matrix.

4. Step 3: Choose k < d and set Pk = (v1, . . . , vk) ∈ Rd×k .

5. Output: Y1, . . . ,Yn, where

Yi = P ′kXi ∈ Rk , i = 1, . . . , n.

Question: How to choose k ?



Principal Component Analysis: Algorithm (2)

Question: How to choose k ?

I Experimental rule: Take k where there is an inflexion point in
the sequence λ1, . . . , λd .

I Define a criterion: Take k such that

λ1 + . . .+ λk
λ1 + . . .+ λd

≥ 1− α,

for some α ∈ (0, 1) that determines the approximation error
that the practitioner wants to achieve.

I Remark: λ1 + . . .+ λk is called the variance explained by the
PCA and λ1 + . . .+ λd = Tr(S) is the total variance.

I Data visualization: Take k = 2 or 3.



Example: Expression of 500,000 genes among 1400
Europeans



Principal Component Analysis - Beyond practice (1)

I PCA is an algorithm that reduces the dimension of a cloud of
points and keeps its covariance structure as much as possible.

I In practice this algorithm is used for clouds of points that are
not necessarily random.

I In statistics, PCA can be used for estimation.

I If X1, . . . ,Xn are i.i.d. random vectors in Rd , how to estimate
their population covariance matrix Σ ?

I If n >> d , then the empirical covariance matrix S is a
consistent estimator.

I In many applications, n << d (e.g., gene expression).

I Theorem: rank(S) ≤ n − 1.



Principal Component Analysis - Beyond practice (2)

I It may be known beforehand that Σ has low rank.

I Then, run PCA on S : Write S ≈ S ′, where

S ′ = P



λ1

λ2 0
. . .

λk
0

0 . . .

0


P ′.

I S ′ will be a better estimator of S under the low-rank
assumption.

I A theoretical analysis would lead to an optimal choice of the
tuning parameter k .


