
Statistics for Applications

Chapter 1: Introduction



Introduction

I My webpage: http://math.mit.edu/~vebrunel/

I Aims of this course:

I To give you a solid introduction to the mathematical theory
behind statistical methods;

I To provide theoretical guarantees for the statistical methods
that you may use for certain applications.

I No required textbook.

I Office hours: Wednesdays, 4-6pm, office 2-239b.

http://math.mit.edu/~vebrunel/


Work required from the students

I Six graded problem sets (20% of the final grade): theoretical
exercises and programming (in R language).

I Weekly non graded (but highly recommended) exercises.

I In-class midterm exam on Thursday March 17 (30% of the
final grade): theoretical problems.

I Final exam (50% of the final grade): 2 hours, location and
time TBD.



Let’s get started with an

introduction to statistics.



Heuristics (1)

I You want to measure the parameter p associated to a coin
that is in your possession;

I Let us design a statistical experiment and analyze its outcome.

I You toss the coin many (say, n) times and collect the value of
each outcome;

I You estimate p with the proportion of Heads within all the
outcomes.

What guarantees the validity of this procedure ?



Heuristics (2)

Formally, this procedure consists of doing the following:

I For i = 1, . . . , n, define Hi = 1 if Heads showed up at the i-th
toss, Hi = 0 otherwise.

I The estimator of p is the sample average

H̄n =
1

n

n∑
i=1

Hi .

What is the accuracy of this estimator ?

In order to answer this question, we propose a statistical model
that describes/approximates well the experiment.



Heuristics (3)

Coming up with a model consists of making assumptions on the
observations Hi , i = 1, . . . , n in order to draw statistical
conclusions. Here are the assumptions we make:

1. Each Hi is a random variable.

2. Each of the r.v. Hi is Bernoulli with parameter p.

3. H1, . . . ,Hn are mutually independent.



Heuristics (4)

Let us discuss these assumptions.

1. Randomness is a way of modeling lack of information; with
perfect information about the conditions of flipping the coin,
physics would allow to predict all the outcomes.

2. Hence, the Hi ’s are necessarily Bernoulli r.v. since
Hi ∈ {0, 1}. Their parameter would be p if the coin could not
land on its side... See https://www.seas.harvard.edu/

softmat/downloads/2011-10.pdf for a nice discussion.

3. Independence is reasonable if there is no change in the way of
tossing the coin (e.g., no learning process).

https://www.seas.harvard.edu/softmat/downloads/2011-10.pdf
https://www.seas.harvard.edu/softmat/downloads/2011-10.pdf


Two important tools: LLN & CLT

Let X ,X1,X2, . . . ,Xn be i.i.d. r.v., µ = E[X ] and σ2 = V[X ].

I Laws of large numbers (weak and strong):

X̄n :=
1

n

n∑
i=1

Xi
P, a.s.−−−−→
n→∞

µ.

I Central limit theorem:

√
n
X̄n − µ
σ

(d)−−−→
n→∞

N (0, 1).

(Equivalently,
√
n (X̄n − µ)

(d)−−−→
n→∞

N (0, σ2).)



Consequences (1)

I The LLN’s tell us that

H̄n
P, a.s.−−−−→
n→∞

p.

I Hence, when the size n of the experiment becomes large, H̄n

is a good (say ”consistent”) estimate of p.

I The CLT refines this by quantifying how good this estimate is.



Consequences (2)

Φ(x): cdf of N (0, 1);

Φn(x): cdf of
√
n

H̄n − p√
p(1− p)

.

CLT: Φn(x) ≈ Φ(x) when n becomes large. Hence, for all x > 0,

P
[
|H̄n − p| ≥ x

]
≈ 2

(
1− Φ

(
x
√
n√

p(1− p)

))
.



Consequences (3)

Consequences:

I Approximation on how H̄n concentrates around µ;

I For a fixed α ∈ (0, 1), if qα is the (1− α/2)-quantile of
N (0, 1), then with probability ≈ 1− α (if n is large enough !),

H̄n ∈

[
p −

qα
√

p(1− p)√
n

, p +
qα
√

p(1− p)√
n

]
.



Consequences (4)

I Note that no matter the (unknown) value of p,

p(1− p) ≤ 1/4.

I Hence, roughly with probability at least 1− α,

H̄n ∈
[
p − qα

2
√
n
, p +

qα
2
√
n

]
.

I In other words, when n becomes large, the interval[
H̄n −

qα
2
√
n
, H̄n +

qα
2
√
n

]
contains p with probability ≥ 1−α.

I This interval is called an asymptotic confidence interval for p.

I What if n is not so large ?



Another useful tool: Hoeffding’s inequality

Hoeffding’s inequality (i.i.d. case)

Let n be a positive integer and X ,X1, . . . ,Xn be i.i.d. r.v. such
that X ∈ [a, b] a.s. (a < b are given numbers). Let µ = E[X ].
Then, for all ε > 0,

P[|X̄n − µ| ≥ ε] ≤ 2e
− 2nε2

(b−a)2 .

Consequence:

I For α ∈ (0, 1), with probability ≥ 1− α,

H̄n −
√

log(2/α)

2n
≤ p ≤ H̄n +

√
log(2/α)

2n
.

I This holds even for small sample sizes n.



Review of different types of convergence (1)

Let (Tn)n≥1 a sequence of r.v. and T a r.v. (T may be
deterministic).

I Almost surely (a.s.) convergence:

Tn
a.s.−−−→
n→∞

T iff P
[{
ω : Tn(ω) −−−→

n→∞
T (ω)

}]
= 1.

I Convergence in probability:

Tn
P−−−→

n→∞
T iff P [|Tn − T | ≥ ε] −−−→

n→∞
0, ∀ε > 0.



Review of different types of convergence (2)

I Convergence in Lp (p ≥ 1):

Tn
Lp−−−→

n→∞
T iff E [|Tn − T |p] −−−→

n→∞
0.

I Convergence in distribution:

Tn
(d)−−−→

n→∞
T iff P[Tn ≤ x ] −−−→

n→∞
P[T ≤ x ],

for all x ∈ R at which the cdf of T is continuous.

Remark
These definitions extend to random vectors (i.e., random variables
in Rd for some d ≥ 2).



Review of different types of convergence (3)

Important characterizations of convergence in distribution

The following propositions are equivalent:

(i) Tn
(d)−−−→

n→∞
T ;

(ii) E[f (Tn)] −−−→
n→∞

E[f (T )], for all continuous and

bounded function f ;

(iii) E
[
e ixTn

]
−−−→
n→∞

E
[
e ixT

]
, for all x ∈ R.



Review of different types of convergence (4)

Important properties

I If (Tn)n≥1 converges a.s., then it also converges in probability,
and the two limits are equal a.s.

I If (Tn)n≥1 converges in Lp, then it also converges in Lq for all
q ≤ p and in probability, and the limits are equal a.s.

I If f is a continuous function:

Tn
a.s./P/(d)−−−−−−→

n→∞
T ⇒ f (Tn)

a.s./P/(d)−−−−−−→
n→∞

f (T ).



Review of different types of convergence (5)

Limits and operations

One can add, multiply, ... limits almost surely and in probability. If

Un
a.s./P−−−−→
n→∞

U and Vn
a.s./P−−−−→
n→∞

V , then:

I Un + Vn
a.s./P−−−−→
n→∞

U + V ,

I UnVn
a.s./P−−−−→
n→∞

UV ,

I If in addition, V 6= 0 a.s., then
Un

Vn

a.s./P−−−−→
n→∞

U

V
.

B In general, these rules do not apply to convergence in

distribution unless the pair (Un,Vn) converges in distribution to
(U,V ).



Another example (1)

I You observe the times between arrivals of new individuals in a
queue (e.g., at a call center): T1, . . . ,Tn.

I You assume that these times are:

I Mutually independent

I Exponential random variables with some common parameter
λ > 0.

I You want to estimate the value of λ, based on the observed
arrival times.



Another example (2)

Discussion of the assumptions:

I Mutual independence of T1, . . . ,Tn: the individuals are not
related to each other, hence, do not decide when to arrive
based on others’ arrival times.

I T1, . . . ,Tn are exponential r.v.: lack of memory of the
exponential distribution.

P[T1 > t + s|T1 > t] = P[T1 > s], ∀s, t ≥ 0.

I The exponential distributions of T1, . . . ,Tn have the same
parameter: homogeneous behavior in the population.



Another example (3)

I Density of T1:

f (t) = λe−λt , ∀t ≥ 0.

I E[T1] =
1

λ
.

I Hence, a natural estimate of
1

λ
is

T̄n :=
1

n

n∑
i=1

Ti .

I A natural estimator of λ is

λ̂ :=
1

T̄n
.



Another example (4)

I By the LLN’s,

T̄n
a.s./P−−−−→
n→∞

1

λ

I Hence,

λ̂
a.s./P−−−−→
n→∞

λ.

I By the CLT,

√
n

(
T̄n −

1

λ

)
(d)
−−−→
n→∞

N (0, λ−2).

I How does the CLT transfer to λ̂ ? How to find an asymptotic
confidence interval for λ ?



The Delta method

Let (Zn)n≥1 sequence of r.v. that satisfies

√
n(Zn − ϑ)

(d)−−−→
n→∞

N (0, σ2),

for some ϑ ∈ R and σ2 > 0 (the sequence (Zn)n≥1 is called
asymptotically normal around ϑ).

Let g : R→ R be continuously differentiable at the point ϑ. Then,

I (g(Zn))n≥1 is also asymptotically normal;

I More precisely,

√
n (g(Zn)− g(ϑ))

(d)−−−→
n→∞

N (0, g ′(ϑ)2σ2).



Consequence of the Delta method (1)

I
√
n
(
λ̂− λ

) (d)
−−−→
n→∞

N (0, λ2).

I Hence, for α ∈ (0, 1) and when n is large enough,

|λ̂− λ| ≤ qαλ√
n
.

I Can

[
λ̂− qαλ√

n
, λ̂+

qαλ√
n

]
be used as an asymptotic

confidence interval for λ ?

I No ! It depends on λ...



Consequence of the Delta method (2)

Two ways to overcome this issue:

I A problem-dependent way:

|λ̂− λ| ≤ qαλ√
n
⇐⇒ λ

(
1− qα√

n

)
≤ λ̂ ≤ λ

(
1 +

qα√
n

)
⇐⇒ λ̂

(
1 +

qα√
n

)−1
≤ λ ≤ λ̂

(
1− qα√

n

)−1
.

Hence,

[
λ̂

(
1 +

qα√
n

)−1
, λ̂

(
1− qα√

n

)−1]
is an asymptotic

confidence interval for λ.

I A systematic way: Slutsky’s theorem.



Slutsky’s theorem

Slutsky’s theorem

Let (Xn), (Yn) be two sequences of r.v., such that:

(i) Xn
(d)−−−→

n→∞
X ;

(ii) Yn
P−−−→

n→∞
c ,

where X is a r.v. and c is a given real number. Then,

(Xn,Yn)
(d)−−−→

n→∞
(X , c).

In particular,

Xn + Yn
(d)−−−→

n→∞
X + c ,

XnYn
(d)−−−→

n→∞
cX ,

. . .



Consequence of Slutsky’s theorem (1)

I Thanks to the Delta method, we know that

√
n
λ̂− λ
λ

(d)
−−−→
n→∞

N (0, 1).

I By the weak LLN,

λ̂
P−−−→

n→∞
λ.

I Hence, by Slutsky’s theorem,

√
n
λ̂− λ
λ̂

(d)
−−−→
n→∞

N (0, 1).

I Another asymptotic confidence interval for λ is[
λ̂− qαλ̂√

n
, λ̂+

qαλ̂√
n

]
.



Consequence of Slutsky’s theorem (2)

Remark:

I In the first example (coin tosses), we used a problem
dependent way: ”p(1− p) ≤ 1/4”.

I We could have used Slutsky’s theorem and get the asymptotic
confidence interval[

H̄n −
qα
√

H̄n(1− H̄n)√
n

, H̄n +
qα
√

H̄n(1− H̄n)√
n

]
.


