Statistics for Applications

Chapter 1: Introduction



Introduction

» My webpage: http://math.mit.edu/~vebrunel/

» Aims of this course:

» To give you a solid introduction to the mathematical theory
behind statistical methods;

» To provide theoretical guarantees for the statistical methods
that you may use for certain applications.

» No required textbook.

» Office hours: Wednesdays, 4-6pm, office 2-239b.


http://math.mit.edu/~vebrunel/

Work required from the students

v

Six graded problem sets (20% of the final grade): theoretical
exercises and programming (in R language).

v

Weekly non graded (but highly recommended) exercises.

v

In-class midterm exam on Thursday March 17 (30% of the
final grade): theoretical problems.

v

Final exam (50% of the final grade): 2 hours, location and
time TBD.



Let’s get started with an

introduction to statistics.



Heuristics (1)

» You want to measure the parameter p associated to a coin
that is in your possession;

> Let us design a statistical experiment and analyze its outcome.

> You toss the coin many (say, n) times and collect the value of
each outcome;

» You estimate p with the proportion of Heads within all the
outcomes.

What guarantees the validity of this procedure ?



Heuristics (2)

Formally, this procedure consists of doing the following:

» Fori=1,...,n, define H; = 1 if Heads showed up at the i-th
toss, H; = 0 otherwise.

» The estimator of p is the sample average

1 n
Ay =~ Z H;.
i=1
What is the accuracy of this estimator ?

In order to answer this question, we propose a statistical model
that describes/approximates well the experiment.



Heuristics (3)

Coming up with a model consists of making assumptions on the
observations H;,i = 1,...,n in order to draw statistical
conclusions. Here are the assumptions we make:

1. Each H; is a random variable.
2. Each of the r.v. H; is Bernoulli with parameter p.

3. Hi,..., H, are mutually independent.



Heuristics (4)

Let us discuss these assumptions.

1. Randomness is a way of modeling lack of information; with
perfect information about the conditions of flipping the coin,
physics would allow to predict all the outcomes.

2. Hence, the H;'s are necessarily Bernoulli r.v. since
H; € {0,1}. Their parameter would be p if the coin could not
land on its side... See https://www.seas.harvard.edu/
softmat/downloads/2011-10.pdf for a nice discussion.

3. Independence is reasonable if there is no change in the way of
tossing the coin (e.g., no learning process).


https://www.seas.harvard.edu/softmat/downloads/2011-10.pdf
https://www.seas.harvard.edu/softmat/downloads/2011-10.pdf

Two important tools: LLN & CLT
Let X, X1, Xa,..., X, beiid. rv., u=E[X] and 0% = V[X].

» Laws of large numbers (weak and strong):
1w P, a.s.
iyt
n n—oo
i=1
» Central limit theorem:

vn Xn—pt ﬂ>/\[(07 1).

o n—o00

(Equivalently, v/n (X, M) N( ) )



Consequences (1)

» The LLN's tell us that

P, a.s.
T

n—o0

Ay

» Hence, when the size n of the experiment becomes large, H,
is a good (say " consistent”) estimate of p.

» The CLT refines this by quantifying how good this estimate is.



Consequences (2)

d(x): cdf of N(0,1);
®p(x): cdf of \/n M

v P(l—p)

CLT: ®,(x) = ®(x) when n becomes large. Hence, for all x > 0,

G s almo(1 o XV
P [|Hn — p| > x] 2(1 d>< p(1—p)))'



Consequences (3)

Consequences:

» Approximation on how H, concentrates around ;

» For a fixed a € (0,1), if g4 is the (1 — a/2)-quantile of
N(0,1), then with probability &~ 1 — « (if n is large enough !),

- Gav/P(l—p dav/pP(L—p
Hn € |p— \% ),p+ \% )




Consequences (4)

» Note that no matter the (unknown) value of p,

p(l—p) <1/4

» Hence, roughly with probability at least 1 — «,

Y do do
Hy,e |p— ,
" [p 2y/n Pt 2/n

In other words, when n becomes large, the interval

v

] contains p with probability > 1 —a.

" aum Pt o

This interval is called an asymptotic confidence interval for p.

v

v

What if n is not so large ?



Another useful tool: Hoeffding's inequality

Hoeffding's inequality (i.i.d. case)

Let n be a positive integer and X, Xi,..., X, bei.i.d. r.v. such
that X € [a, b] a.s. (a < b are given numbers). Let = E[X].
Then, for all € > 0,

2ne?

P[|X, — p| > €] <2e 697,

Consequence:
» For a € (0,1), with probability > 1 — a,

A - /Iog(22n/a) <p<h+ Iog(22n/oz).

» This holds even for small sample sizes n.



Review of different types of convergence (1)

Let (Th)n>1 a sequence of r.v. and T a r.v. (T may be
deterministic).

» Almost surely (a.s.) convergence:

T, 255 T iff P [{w: To(w) —— T(w)H =1

» Convergence in probability:

Tn%r iff P[T,—T|>e]—=0, Ve>0.



Review of different types of convergence (2)

» Convergence in LP (p > 1):

T, —=— T iff E[|T,— T|]——0.
n—oo n—oo

» Convergence in distribution:

T, (d)

n—o0

T iff P[T,<x] —— P[T <x],
n—oo
for all x € R at which the cdf of T is continuous.

Remark
These definitions extend to random vectors (i.e., random variables
in RY for some d > 2).



Review of different types of convergence (3)

Important characterizations of convergence in distribution

The following propositions are equivalent:

Q) T, -9 T,

n—o0

(ii) E[f(T,)] — E[f(T)], for all continuous and

bounded function f;

(iil) E [eixTn}  LE [eiXT}, for all x € R.

n—oo



Review of different types of convergence (4)

Important properties

» If (T,)n>1 converges a.s., then it also converges in probability,
and the two limits are equal a.s.

» If (T,)n>1 converges in LP, then it also converges in L9 for all
g < p and in probability, and the limits are equal a.s.

» If f is a continuous function:

a.s./P/(d) T = #(T,) a.s./P/(d) £F(T).

n—o0 n—o0

Ty



Review of different types of convergence (5)

Limits and operations

One can add, multiply, ... limits almost surely and in probability. If
a.s./P a.s./P
U, —— U and V, —— V/, then:
n—oo n—o0
> U, + V, M) U+ V,
n—o0
- UV, 255y,
n—oo
: .. U, as.p U
» If in addition, V # 0 a.s., then Vn Eo_) v

In general, these rules do not apply to convergence in

distribution unless the pair (U,, V) converges in distribution to
(U, V).



Another example (1)

» You observe the times between arrivals of new individuals in a
queue (e.g., at a call center): Tq,..., T.

> You assume that these times are:
» Mutually independent
» Exponential random variables with some common parameter

A>0.

» You want to estimate the value of )\, based on the observed
arrival times.



Another example (2)
Discussion of the assumptions:

» Mutual independence of Ti,..., T,: the individuals are not
related to each other, hence, do not decide when to arrive
based on others’ arrival times.

> Ti,..., T, are exponential r.v.: lack of memory of the
exponential distribution.

P[Ti >t+s|T1 >t]=P[T1 >s], Vs, t>0.

» The exponential distributions of T;,..., T, have the same
parameter: homogeneous behavior in the population.



Another example (3)

» Density of Ti:
f(t) =Xe ™, Vt>0.

1
> E[T]_] - X

) 1.
» Hence, a natural estimate of X is

_ 1<
T ::n;T,-.
1=

» A natural estimator of X is

~ 1
A= —.
Th



Another example (4)

By the LLN's,

v

as./p 1

n—oo A

;| 1
\

» Hence,
~ a.s./P

n—o00

By the CLT,

v

Vvn <Tn — i) %N(O,A*).

How does the CLT transfer to A ? How to find an asymptotic

confidence interval for A ?

v



The Delta method

Let (Z5)n>1 sequence of r.v. that satisfies

Vn(Z, —10) LGN N(0,02),

n—oo

for some ¥ € R and 02 > 0 (the sequence (Zn)n>1 is called
asymptotically normal around 7).

Let g : R — R be continuously differentiable at the point ¥). Then,
> (8(Zn)),>1 is also asymptotically normal;
> More precisely,

Vi (g(Zn) - g(9)) —2s N (0, (9)202).

n—oo



Consequence of the Delta method (1)

a d
- ()\—)\) g—)> (0, 72).
n—oo
» Hence, for a € (0,1) and when n is large enough,
Y qa>\
A=) < ==
| | < NG
Q QA 2 2 _
» Can [)\ — q—,)\ + q] be used as an asymptotic
n Vvn

confidence interval for A ?

v

No ! It depends on A...



Consequence of the Delta method (2)

Two ways to overcome this issue:

» A problem-dependent way:

o<t /\<1—qa>§f\§/\(1+%>

vn vn vn
= X<1+%>_1§A§X<1—:’;ﬁ)_l.

-1 -1
Hence, | <1 + \Cl/aﬁ> ,5\ <1 — 3‘%) ] is an asymptotic

confidence interval for \.

> A systematic way: Slutsky's theorem.



Slutsky's theorem

Slutsky's theorem
Let (Xn), (Yn) be two sequences of r.v., such that:

(i) X, =9 x;

n—oo
(i) Y, —— ¢,
n—oo

where X is a r.v. and c is a given real number. Then,

(Xn, Ya) =205 (X, €).

n—oo

In particular,
d
X+ Y, -y x e,
(o0}

n—

XY, D ex.
n—oo



Consequence of Slutsky's theorem (1)

» Thanks to the Delta method, we know that

» By the weak LLN,
A— A

n—oo
» Hence, by Slutsky’s theorem,

ﬁng 9 vo,1).

n—o0

» Another asymptotic confidence interval for A is

By qoc}\"‘ qa}\\
A— — AN+ —1.
[ Vi *ﬁ]



Consequence of Slutsky's theorem (2)

Remark:

> In the first example (coin tosses), we used a problem
dependent way: "p(1 —p) <1/4".

» We could have used Slutsky's theorem and get the asymptotic
confidence interval

_ H.(1—H,) - H.(1-H
f, - VPl F) /B F)




